Геометрия: Планиметрия в тезисах и решениях. 9 класс - [5]
Точки А, В, С, D лежат на соответствующих лучах.
Углы АОВ и COD – вертикальные.
Две прямые называют перпендикулярными, если они пересекаются под прямым углом. Перпендикулярность прямых обозначается знаком ? (рис. 12):
а ? b.
Рис. 12.
Через каждую точку прямой можно провести перпендикулярную ей прямую, и только одну.
Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной данной, который имеет одним из своих концов их точку пересечения. Этот конец отрезка называется основанием перпендикуляра (рис. 13):
АA' – перпендикуляр к прямой a, A' – обоснование перпендикуляра.
Рис. 13.
Биссектрисой угла называется луч, который исходит из вершины угла, проходит между его сторонами и делит угол пополам (рис. 14).
Рис. 14.
ОС – биссектриса угла АОВ (?АОС = ?ВОС).
Пусть две прямые a и b пересечены прямой с.
Прямая с по отношению к прямым a и b называется секущей (рис. 15).
Рис. 15.
Углы 3 и 5 (4 и 6) называются внутренними накрест лежащими, углы 3 и 6 (4 и 5) – внутренними односторонними, углы 1 и 6 (2 и 5) – соответственными.
Две прямые называются параллельными, если они не пересекаются. Для обозначения параллельности прямых используется знак||(рис. 16):
а||b.
Рис. 16.
Треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки – его сторонами (рис. 17):
?ABC.
Рис. 17.
Углом треугольника ABC при вершине А называется угол, образованный отрезками АВ и АС. Также определяются углы треугольника при вершинах В и С.
Две фигуры называются равными, если они при наложении друг на друга совпадают (т. е. существует движение, переводящее одну фигуру в другую). Таким образом, треугольники равны, если у них соответствующие стороны и соответствующие углы равны (при этом соответствующие углы лежат против соответствующих сторон).
Треугольник называется равнобедренным, если у него две стороны равны. Эти равные стороны называются боковыми сторонами, а третья сторона называется основанием треугольника (рис. 18).
Рис. 18.
?ABC – равнобедренный (АВ = ВС – боковые стороны, АС – основание).
Треугольник, у которого все стороны равны, называется равносторонним (рис. 19).
Рис. 19.
? DEF– равносторонний (DE = EF = DF).
Высотой треугольника, опущенной из данной вершины, называется перпендикуляр, проведённый из этой вершины к прямой, которая содержит противолежащую сторону треугольника (рис. 20, а; б).
Рис. 20.
ВН – высота в треугольнике ABC (ВН ? АС).
Биссектрисой треугольника, проведённой из данной вершины, называется отрезок биссектрисы угла треугольника, соединяющий эту вершину с точкой на противолежащей стороне (рис. 21).
Рис. 21.
AL – биссектриса в треугольнике ABC (?BAL = ?CAL).
Медианой треугольника, проведённой из данной вершины, называется отрезок, соединяющий эту вершину с серединой противолежащей стороны треугольника (рис. 22).
Рис. 22.
AM – медиана треугольника ABC (BM = MC).
Внешним углом треугольника при данной вершине называется угол, смежный с углом треугольника при этой вершине (рис. 23).
Рис. 23.
? – внешний угол ?ABC при вершине А.
Треугольник называется прямоугольным, если у него есть прямой угол (рис. 24).
Рис. 24.
Сторона прямоугольного треугольника, противолежащая прямому углу, называется гипотенузой, две другие стороны называются катетами.
?ABC – прямоугольный (?А = 90°). АВ и АС – катеты, ВС – гипотенуза.
Треугольник называется остроугольным, если все его углы – острые. Треугольник называется тупоугольным, если у него есть тупой угол.
?ABC – остроугольный, ?А < 90° (рис. 25, а);
?ABC – тупоугольный, ?А > 90° (рис. 25, б).
Рис. 25.
Средней линией треугольника называется отрезок, соединяющий середины двух любых сторон треугольника (рис. 26).
Рис. 26.
EF – средняя линия ?ABC (АЕ = ЕВ. CF = FB).
Египетским называется прямоугольный треугольник, у которого длины сторон выражаются целыми числами (например:3, 4, 5 или 5, 12, 13 и так далее).
Окружностью называется фигура, которая состоит из всех точек плоскости, равноудалённых от заданной точки. Эта заданная точка называется центром окружности.
Расстояние от точек окружности до её центра называется радиусом окружности. Радиусом называется также отрезок, соединяющий любую точку окружности с её центром (рис. 27).
Рис. 27.
ОА – радиус окружности.
Радиусы окружностей часто обозначают буквами R или r, т. е. ОА = R или ОА = r.
Круг – это часть плоскости, ограниченная окружностью (рис. 28).
Рис. 28.
Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр, называется диаметром окружности (рис. 29).
Рис. 29.
АВ – диаметр окружности, CD – хорда.
Диаметры окружностей часто обозначают буквами D или d. Очевидно, что D = 2R или d = 2 r.
Дуга окружности – это её часть, ограниченная двумя точками окружности (рис. 30).
Рис. 30.
Точки А и В делят окружность на две дуги:1 и 2.
Сектор круга – часть круга, ограниченная двумя радиусами и соответствующей дугой (рис. 31).
Рис. 31.
Радиусы ОА и ОВ разделили круг на два сектора:1 и 2.
Сегмент круга – это часть круга, ограниченная хордой и соответствующей дугой (рис. 32).
В пособии представлены материалы для проведения математических олимпиад по лигам в 5 -9 классах, адаптированных к разным учебникам. Такие олимпиады сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей математики, педагогов-организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.
В пособии представлены материалы для проведения интеллектуальных марафонов – разнообразных по форме конкурсов знаний учеников 5-11 классов по всем предметам школьной программы. Завоевавшие популярность благодаря телевидению, такие конкурсы сочетают увлекательность игры и спортивную соревновательность, развивают интерес к знаниям, память и внимание, активизируют общение и творческую энергию участников.Для учителей, педагогов – организаторов внеклассной работы в общеобразовательных школах, гимназиях и лицеях.
«Однажды просыпаешься и понимаешь, что все это никуда не годится. Надо что-то менять». Драматург Юлия Тупикина предлагает простое и изящное решение для перемен в вашей жизни – попробуйте написать свою первую пьесу! Почему именно ее? Современный российский театр очень любит новичков, всегда открыт свежим именам и идеям. Вы сможете попробовать свои силы на одном из конкурсов, а там и до больших постановок и хороших гонораров недалеко. И даже если вы не станете великим писателем, процесс написания пьесы благодаря этой книге станет для вас увлекательным путешествием, полным творческих открытий. В книге много практических упражнений, которые можно выполнять одно за одним или выбирать те, что вам больше приглянулись.
Сулимов Клим Тимофеевич, кандидат биологических наук, ведущий научный сотрудник РосНИИ культурного и природного наследия им. Д. С. Лихачева, член научно-координационного совета по отечественным породам собак России. Научный консультант отдела кинологического мониторинга ПАО «Аэрофлот». Материал, подготовленный К. Т. Сулимовым в области общей и прикладной кинологии, представляет собой собственные комментарии к двум альтернативным теориям происхождения домашней собаки, к фрагментам истории отечественного собаководства, реплики и размышления на тему о стандартах пород и практике полевых испытаний охотничьих и служебных собак второй половины XX столетия, о нетрадиционном использовании естественных пород и перспективах выведения новых в настоящем и обозримом будущем. Затронуты проблемы так называемых бесхозных дворняг. Значительная часть книги посвящена критическому рассмотрению породных признаков главных отечественных пород и отродий отечественного разведения, функциональным особенностям основных статей собаки и ее поведению. Может служить пособием для изучения становления пород, их преобразований в условиях отечественной культуры собаководства.
Книга Н. Смелзера «Социология» представляет курс лекций по общей социологии для студентов высших учебных заведений.Достоинство книги в том, что она написана максимально доступным языком и полностью соответствует содержанию курса «Социология», как он отражён в государственном стандарте, а потому данное учебное пособие может быть базовым по этому курсу.Книга Смелзера также предназначена для широкого круга читателей и, в первую очередь, для предпринимателей и руководителей.На русском языке это уже второе издание.
Учебное пособие предлагает сжатое освещение вопросов, связанных с развитием французской и английской литератур указанного эстетического направления. Помимо изложения историко-литературного материала пособие содержит фрагменты из художественных произведений, которые становятся предметом подробного аналитического разбора.
Учебно-методическое пособие предназначено для аудиторной и самостоятельной работы студентов-бакалавров Пензенской ГСХА по дисциплине «культурология». В нем содержатся разделы, посвященные теории, истории мировой и отечественной культуры. В данном издании содержатся необходимые методические и учебные материалы, облегчающие подготовку студента ко всем формам итогового и промежуточного контроля по данной дисциплине.
Дорогие ребята!На уроках литературы вы знакомитесь с произведениями устного народного творчества. Один из самых сложных жанров фольклора – былины. У вас часто возникают трудности в изучении этих произведений – особенно в написании сочинений. Нынешнему школьнику непросто понять мир старинных былин и чувства, которые древнерусский сказитель вкладывал в них. В тексте былин всегда встречается много слов и образов, которые в умах и сердцах наших далёких предков вызывали яркие впечатления и горячие отклики, а современному человеку их необходимо пояснять.Эта книга поможет вам легко выполнить самые различные задания учителя: найти постоянные эпитеты в тексте былины, дать сравнительную характеристику персонажей, ответить на вопросы по содержанию произведения, подобрать пословицы на заданную тему и объяснить их происхождение и, конечно же, написать отличное сочинение.На темы, которые предлагает школьная программа, в книге представлены уже готовые сочинения.