Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [85]

Шрифт
Интервал

Если не считать изменений, происходящих при очень высоких энергиях, все электроны имеют одно и то же отношение e/m, 1,76∙10>11 кулон/кг. Сравните это с отношением е/М для самого легкого из ионов, Н>+. Такие ионы переносят 96 500 000 кулон на каждые 1,008 кг водорода, выделяющегося при электролизе. Так что для Н>+е/М = 9,57∙10>7 кулон/кг. Для электронов отношение e/m почти в две тысячи раз больше. Тогда, если е одинаково у обеих частиц, значение m у электронов должно быть почти в две тысячи раз меньше. [Несколько раньше с помощью изобретательно поставленных опытов и логических рассуждений было показано, что произведение Ne одинаково для ионов в газах и ионов, образующихся при электролизе (N — число Авогадро). Ни N, ни е не были известны, а произведение Ne оказалось возможным оценить: с одной стороны, существовали измерения «валового выхода» при электролизе, тех самых 95 700 000 кулон, переносимых килограммом водородных ионов, с другой стороны, хитроумные опыты с ионами газов с использованием явления диффузии. После их выполнения рассудили, что в случае ионов газов е — это заряд выбитого электрона, а N — одно и то же как для ионов, так и для электронов; следовательно, и е одно и то же.] Так впервые было показано, что электроны — это крошечные осколки атомов[105].


Таблица значений e/m и е/М

(Самые первые измерения были недостаточно точны. В таблице приведены данные, полученные уже тогда, когда были разработаны хорошие экспериментальные методики; численные результаты обычно рассчитывались по отклонениям частиц в электрическом и магнитном полях.)

Частицы ∙ Значение e/Mи е/m, кулон/кг

Катодные лучи в разрядной трубке: электроны, выбитые из атомов газа или металлического электрода с помощью бомбардировки. [Поскольку это был самый первый метод получения электронных пучков (благодаря нему за ними и закрепилось название катодных лучей), приводятся результаты трех различных экспериментов.] ∙ 1,775∙10>11; 1,761∙10>11; 1,759∙10>11

Электроны, вылетающие из вольфрамовой спиральки, накаленной добела (как в диоде) ∙ 1,76∙10>11

Электроны с раскаленного докрасна оксидного катода (какие применяются в современных радиолампах) ∙ 1,78∙10>11

Электроны, выбитые из металла ультрафиолетовым светом («фотоэлектрический эффект», используемый в фотоэлементах) ∙ 1,756∙10>11

Внутриатомные электроны, вынуждаемые внешним магнитным полем к изменению своих «орбит» (эффект Зеемана) ∙ 1,761∙10>11

Электроны в водородных и гелиевых атомах: использован метод сравнения электронной массы с массой атома по измерениям длин волн в спектрах, трактуемых теорией Бора, которая считается верной ∙ 1,761∙10>11

Медленные бета-частицы, испускаемые радиоактивными атомами ∙ 1,763∙10>11

Бета-частицы (медленные… умеренно быстрые… быстрые), испускаемые радиоактивными атомами; получается непрерывный набор значений ∙ от 1,76∙10>11 до 0,35∙10>11

В более поздних экспериментах, когда электроны, испускаемые горячими катодами, стали разгонять до огромных энергий на ускорителях, нижняя граница интервала получаемых значений е/m опустилась; получены величины, в тысячи раз меньшие — это изменение связывается с релятивистским увеличением массы

Положительно заряженные лучи: положительные ионы в разрядных трубках. Значение е/М зависит от того, какой газ наполняет трубку:

— ион водорода Н+ ∙ 1,76∙10>11/1840

— ион кислорода О>+ ∙ 1,76∙10>11/16∙1840

— ион кислорода О>++ ∙ 1,76∙10>11∙2/16∙1840

— ионы ртути Hg>+, Hg>++ … до Hg>++++++++ ∙ 1,76∙10>11 (от 1 до 8)/200∙1840

Положительные ионы при электролизе:

— ион водорода Н+ ∙ 1,76∙10>11/1840

— меди Си>++  ∙ 1,76∙10>11∙2/63,6∙1840

— ион хлора Сl>- ∙ 1,76∙10>11/35∙1840

Альфа-частицы, испускаемые радиоактивными атомами ∙ 1,76∙10>11∙2/4∙1840

И многие недавно открытые частицы (например, μ-мезоны) ∙ 1,76∙10>11/~200


Вычислим дроби более точно;

m/M = (e/M)/(e/m) = 9.75∙10>7/1.76∙10>11 = 1/1840

Электрон и атом, его потерявший (т. е. оставшийся от атома положительный ион), имеют равные и противоположные по знаку заряды, поскольку вещество обычно нейтрально. Но массы их чрезвычайно сильно отличаются. Не удивительно, что электроны так подвижны в электрических полях: легко отклоняемый пучок электроны образуют в телевизионной трубке, мгновенно, как охваченная паникой толпа, срываются с места в счетчике Гейгера. При таком большом в сравнении со своей маленькой массой заряде они ускоряются в электрических полях много быстрее, чем заряженные атомы. Лишь когда электроны приобретают огромные кинетические энергии, миллиарды электронвольт, они кажутся (неподвижным наблюдателям) такими же массивными, как атомы.


Зачем нужно знать е

Если мы сможем измерить е, то, поделив эту величину на определенное ранее отношение е/m, найдем массу отдельного электрона. А массу отдельного атома с его помощью узнать еще проще, поскольку е/М для атомных ионов легко определяется из опытов по электролизу. По атомным массам можно рассчитать массу любой молекулы, а следовательно, число молекул в любом образце жидкости или газа. Кроме того, теории атомной структуры не обходятся без вычислений, для которых необходимо знать истинную величину


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.