Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [87]

Шрифт
Интервал

а) Проводя опыты с масляной капелькой, Милликен обнаружил, что скорость ее падения оставалась постоянной в течение многих часов, сколько бы раз ей ни позволяли падать. Однако с капелькой воды вело обстояло иначе — время ее падения постепенно увеличивалось. К какому выводу вы приходите относительно масляной капельки?

б) Во включенном электрическом поле капелька двигалась вверх с постоянной (но в разных опытах различной) скоростью. Эта скорость оставалась постоянной на протяжении многих циклов подъема, а затем вдруг принимала новое значение. Эти внезапные изменения учащались после того, как Милликен включал находившуюся поблизости рентгеновскую трубку. Дайте объяснение этих внезапных изменений.

Вот некоторые данные измерений, выполненных с одной капелькой, которая многократно падала со скоростью v = 2,305 см/мин (см. сноску на стр. 280). После включения электрического поля она в течение нескольких циклов поднималась со скоростью u>1 = 2,516 см/мин. Затем скорость подъема внезапно изменилась и в течение одного или нескольких циклов была равна u>2 =1,434 см/мин, затем опять изменилась до u>3 = 0,903 см/мин, затем до 0,369 см/мин, потом опять до 0,903 см/мин и после принимала значения 1,958, 0,903 и 1,434 см/мин.

Как теория, так и эксперимент показывают, что при очень медленном движении шарика через вязкую жидкость (а также и при движении через воздух, если капелька достаточно мала) сила сопротивления, возникающая за счет трения о жидкость, дается выражением

F = K∙(скорость),

где К — постоянная, зависящая от коэффициента трения жидкости и радиуса шарика, а они не меняются в течение всего эксперимента с капелькой.

Когда капля падает в отсутствие поля, на нее действуют лишь две силы: ее вес m = 9,8 ньютон и сила трения Kv. Разогнавшись вначале, капля падает затем равномерно, без ускорения.

в) Напишите уравнение, показывающее, как эти две силы связаны между собой при равномерном падении. [При написании этого уравнения используйте экспериментальное значение v = 2,305 см/мин[109].]

г) Предположим, что электрическое поле, когда оно включено, имеет напряженность X ньютон/кулон и действует на заряд капельки, равный Q кулон. С какой силой поле действует на капельку?

д) Когда поле включено, капелька движется вверх со скоростью и (например, 2,516 см/мин), и на нее действует сила трения Kv, направленная вниз и препятствующая этому движению. Вес капли m = 9,8 ньютон — это тоже сила, направленная вниз. Начав движение, капля движется с постоянной скоростью без ускорения. Напишите уравнение, связывающее три силы, действующие на капельку.

е) Исключите из последнего выражения вес m = 9,8 ньютон, подставив его значение из первого уравнения, и перепишите результат в форме Q =… Это новое уравнение должно показывать, что Q прямо пропорционально (v + u), если X постоянно.

ж) Используйте результат, полученный в пункте е), для анализа данных измерений Милликена, которые приведены выше. Величина v равнялась 2,305 см/мин и не менялась, а разные значения и приведены выше. Если (v + u) служит мерой полного заряда Q, то изменения (v + u) должны служить мерой изменения заряда, т. е. заряда, получаемого каплей от ионов и т. д.

Изменение заряда ΔQ определяется по изменению (v + u), которое равняется изменению v+ изменение u. Но u не меняется, так что изменение v равно нулю и ΔQ определяется изменением u.

Рассчитайте изменения скорости подъема капли и используйте их для определения изменения заряда, т. е. для определения заряда, подхваченного каплей. Рассчитайте все значения изменения u. Найдите одно элементарное изменение, которое объяснит все наблюдаемые изменения, и предположите, что оно соответствует одному электронному заряду. Затем скажите, сколько электронов должно было участвовать в каждом наблюдаемом изменении заряда.

[Результаты Милликена не могли быть «абсолютно точны». Последний знак в приводимых им значениях, скорее всего, сомнителен. Так что вы не должны обращать внимания на небольшие различия. Что значит «небольшие» — ваше дело догадаться. Милликен обсуждал этот вопрос, когда разбирал возможные ошибки своего эксперимента, и даже поссорился (вспомним яйца в кульке) с одним из своих соперников, который долго отстаивал существование «субэлектрона». Сомнения в последнем знаке, который приводит Милликен, означают, что случайная ошибка может приводить к изменениям Δu в 1 или 2 %.]

з) Используя то изменение и, которое, согласно вашему решению, отвечает одному электронному заряду, вернитесь к значению (v + u), которое определяет ПОЛНЫЙ заряд, и рассчитайте, сколько электронных зарядов несла капля, начиная свое движение, когда скорость ее подъема u>1 составляла 2,516 см/мин.

Расчеты в пунктах ж) и з) показывают, каким способом Милликен доказал, что все электроны имеют один и тот же заряд.



Фиг. 7.Опыт Милликена.


Универсальный атом электричества

Измерения с одной капелькой могли гарантировать существование основного атома электрического заряда. Но для того чтобы доказать, что основной «атом заряда» есть универсальная постоянная, Милликен должен был выполнить множество опытов с капельками различных размеров, с разными жидкостями и с различными способами ионизации. Если бы в каком-нибудь эксперименте обнаружилась нецелая доля введенного им гипотетического заряда вместо целого их числа, то он вынужден был бы выбрать меньшее значение «атома электричества» — и тогда необходимость переходить ко все меньшим и меньшим атомам разрушила бы как его надежды на успех, так и наши нынешние теории строения атомов.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.