Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [86]

Шрифт
Интервал

. Точное знание этой величины имеет чрезвычайно важное значение.


Измерение е

К 1900 г. существование электрона как атомной частицы было установлено и определено отношение elm для него, но о величине е можно было строить лишь приблизительные догадки. Экспериментальные факты по электролизу задолго до этого указывали на то, что существуют «атомы электричества», во всем подобные друг другу, причем некоторые ионы несут по одному такому атому электрического заряда, другие — по два и т. д. К 1910 г. величина е стала крайне необходимой для развития атомных теорий — теорию Бора нельзя было бы как следует проверить, не зная как следует ни е, ни е/m. Дж. Дж. Томсон и другие попытались измерить е, формируя облачка из мельчайших водяных капелек, каждая из которых образовывалась вокруг иона с зарядом е, а затем собирая эти облачка. Это дало лишь грубую оценку, и не было никакой уверенности, что все эти заряды в точности равны[106]. Тогда Р. А. Милликен[107] и поставил свой великий эксперимент, в котором использовал крошечную капельку масла, собиравшую небольшой заряд с ионов воздуха. Он снова и снова измерял полный заряд капельки и каждый раз обнаруживал, что тот в небольшое целое число раз (например, в 1, 2 или 10) больше некоторого основного заряда, который во всех случаях был одним и тем же. Поначалу он не знал ни величины этого универсального основного заряда, «электрона», ни того, сколько таких зарядов помещалось на его капельке. Он должен был проводить измерения со многими заряженными каплями, а потом устраивать арифметическую «угадайку». Задача была «похожа на случай, когда вам надо найти вес одного яйца, если даны веса большого числа бумажных кульков с яйцами, в каждом из которых находится свое, к тому же неизвестное число яиц»[108].


Задача 7

а) Пусть кульки с яйцами весят 12,16, 28, 24 унции. Попробуйте определить вес яйца и число яиц в каждом кульке.

б) Предположим, что вам дали еще один кулек, а он весит 14 унций. Как это отразится на ваших предположениях?

в) Добавили еще один кулек, весящий 12,1 унции. К какому заключению вы придете?


По существу метод, использованный Милликеном и его предшественниками, совпадает с тем, который, как рассказывалось в гл. 33, использовался для измерения заряда металлического шара. Он заключался в измерении силы, действовавшей на шар со стороны однородного электрического поля. Для измерения е несколько электронных зарядов передавалось крошечной капельке жидкости, плавающей (или, точнее, медленно падающей) в воздухе. Капелька помещалась в вертикальное электрическое поле, которое, действуя на заряд капельки, тянуло ее вверх. Единичный заряд электрона е очень мал, и видимая дождевая капля была бы для него слишком тяжела; потребовался бы миллиард или около того электронных зарядов, чтобы в реально возможном поле удержать ее на весу. Поэтому была использована очень маленькая капля из пульверизатора, настолько маленькая, что ее по-настоящему и не видно было — лишь крошечную звездочку рассеянного ею света можно было наблюдать в микроскоп. Такая миниатюрная капелька равномерно опускается в воздухе — трение о воздух компенсирует действие тяготения. Постоянную скорость этого движения вниз можно измерить и использовать для того, чтобы «взвесить капельку». Если включить вертикальное электрическое поле, оно добавит еще одну силу: действие поля на электрический заряд капельки. В первых экспериментах электрическое поле подбиралось так, чтобы не давать капельке падать, так что она парила в воздухе. Однако большей точности удалось добиться, используя более сильное поле и заставляя капельку сперва двигаться вверх, а потом позволять ей падать в отсутствие поля. Таким образом, измерения можно было повторять, «вздергивая» капельку вверх и позволяя ей падать снова и снова, играя с ней, как кот с мышью. В этом и состояло выполненное Милликеном измерение электронного заряда — великолепный образец экспериментального исследования, которое принесло ему неувядающую славу.

Чтобы понять, как Милликен проводил свои измерения, проработайте приведенную ниже задачу 8. Капелька (чаще масляная, чем водяная) обычно образовывалась со случайным зарядом, полученным за счет трения о стенки трубки пульверизатора, подобно тому, как эбонитовая палочка электризуется о мех. Путешествуя вверх и вниз, она могла случайно изменить свой заряд, встретив ион в окружающем воздухе. Это изменение сразу сообщало ей новую скорость дрейфа вверх в электрическом поле. Иногда Милликен вызывал быстрое изменение заряда, используя рентгеновские лучи для того, чтобы выбить электроны из самой капельки. Он заставлял одну и ту же капельку многократно менять свой заряд, а после этого должен был решать задачу о «яйцах в кульке».


Задача 8. Опыт Милликена по определению заряда электрона

Милликен проводил свой опыт с маленькой масляной каплей, которая получила небольшой заряд от ионов воздуха. Он мог часами экспериментировать с одной и той же каплей, заставляя ее снова и снова подниматься вверх, а затем позволяя ей падать. В отсутствие электрического поля капля падает с постоянной скоростью, характерной для капли данного размера.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.