Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [83]

Шрифт
Интервал

(ЭТО НЕ ОПЕЧАТКА).

Используйте эти данные для оценки массы одного электрона по следующему рецепту:

а) Обозначьте массу электрона в кг через т. Запишите кинетическую энергию, с которой он движется вдоль трубки, выразив ее через m. (Запишите и единицы измерения.)

б) Обозначьте заряд в кулонах через е. Какую энергию он приобрел, пройдя через 100-вольтовую разность потенциалов электронной пушки? Выразите ее через е. (Опять не забудьте про единицы.)

в) Проследите, чтобы ответы на пункты а) и б) были выражены в одних и тех же единицах. Запишите уравнение, отражающее тот факт, что энергия, переданная электрону 100-вольтовой батареей, как раз и есть его кинетическая энергия. Решите его и найдите отношение заряда к массе для электрона, т. е. е/m.

г) В другом, совершенно особом опыте Милликен обнаружил, что заряд электрона е равен —1,6∙10>-19 кулон. Если так, то чему равно значение массы электрона в кг?


Все электроны одинаковы

Прямое измерение и неудобно, за исключением случая достаточно медленных электронов; но кто бы ни делал измерения, описанные в задачах 3 и 4, из сопоставления их результатов всегда получалось одно и то же значение е/m, какую бы скорость электронов ни брали, какое бы напряжение ни прикладывали к электронной пушке. Из какого материала ни сделай пушку, значение е/m все равно получается одним и тем же: все электроны имеют одинаковое отношение заряда к массе. Этот вывод о том, что электроны едины, универсальны, был получен в результате исследований, выполненных в начале нашего столетия. Однородных пучков, создаваемых пушками с известным напряжением, тогда не было, и приходилось выполнять более сложные измерения, используя электрическое поле, чтобы отклонять электроны, а затем еще магнитное поле. С тех пор отклонения пучков в разных направлениях электрическими и магнитными полями постоянно используются в фундаментальных экспериментах атомной физики. В задаче 5 показано, как можно использовать поперечное электрическое поле.

Можно сопоставить отношение е/m с результатами других опытов, чтобы получить очень важную информацию об атомах; но и сами по себе измерения е/m позволяют высказать два утверждения огромного значения:

1) Отношение е/m имеет одну и ту же величину для всех электронов, от самых медленных до довольно быстрых, из какого бы источника они ни вылетали. Их можно испарять из раскаленной нити, выбивать из атомов металла светом (как в фотоэлементе), срывать с атомов рентгеновскими лучами, радиоактивные атомы могут выстреливать их в виде бета-частиц — результат будет тот же самый, что и при первоначальном способе выбивания их из атомов при соударениях в разрядной трубке. Это означает, что электроны все одинаковы, что электрон — универсальная составная часть материи.

2) Если производить опыты с очень быстрыми электронами, величина е/m оказывается меньше стандартной. Это означает, что если заряд е остается постоянным, то масса при высоких скоростях становится больше — в полном согласии с теорией относительности.


Задача 5. Отклонение пучка электронов электрическим полем

Одним из первых экспериментальных способов исследования катодных лучей была посылка пучка через электрическое поле (см. выше вводную задачу 2). Отношение заряда к массе для частиц в пучке можно определить также, измеряя вместо напряжения на трубке отклонение пучка».

Задача покажет вам, как рассчитать е/m по результатам таких измерений. Предположим, что пучок электронов вылетает из пушки со скоростью 2,4∙10>7 м/сек, т. е. 24 000 000 м в секунду (как определить эту скорость, сказано в задаче 3). Этот пучок пропускается через протяженную область, поперек которой приложено электрическое поле (фиг. 6). В конце своего пути пучок попадает на флуоресцирующий экран, так и не успев выйти за пределы области, пронизанной полем.



Фиг. 6.


Приводимые ниже данные вполне могут быть получены в реальном опыте. Представьте себе, что так оно и есть, что попытка измерить отношение е/m для электрона предпринята, и рассчитайте е/m (в кулонах на килограмм).

>Скорость частиц в пучке (см. задачу 3)… 2,4∙10>7 м/сек.

>Отклонение пучка в приложенном поле… 0,015 м вниз по вертикали.

>Расстояние между пластинами, создающими поле… 0,050 м.

>Длина области, в которой действует… поле 0,20 м.

>Разность потенциалов между пластинами… 120 в.


(Обратите внимание, что напряжение на пушке не задается, поскольку знать его не нужно.)

Рассчитайте:

а) Напряженность электрического поля между пластинами, т. е. силу, в ньютонах, действующую на один кулон.

б) Силу, действующую со стороны поля на заряд е, т. е. на один электрон.

в) Ускорение электрона. Обозначьте его массу в килограммах через m.

г) Время, которое потребуется электрону, чтобы пересечь область 0,20 м, где имеется поле. (Примечание, 0,20 м — длина области по горизонтали, и скорость, названная выше, — тоже горизонтальная. Влияет ли как-нибудь вертикальная скорость, приобретаемая электронами? Относительно независимости движений проконсультируйтесь у Галилея.)

д) Затем рассчитайте расстояние s, которое электрон проходит по вертикали под действием поля. Для этого заметьте, что электрон попадает в поле с нулевой скоростью по вертикали и движется с ускорением, рассчитанным в пункте в), в течение времени, рассчитанного в пункте


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.