Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [108]

Шрифт
Интервал

Атом радия, следовательно, является чем-то нестабильным. Купите стерженек радия и попытайтесь сохранить его. Только половина его останется 1600 лет спустя радием. Вероятность для отдельного атома радия распасться[127] в следующие 1600 лет составит 50 % и т. д. Его дочерний атом радон является гораздо более нестабильным. Время его распада наполовину составляет 4 дня. Этот четырехдневный период есть период полураспада радона. Попытайтесь сохранить образец чистого газообразного радона, и четыре дня спустя вы обнаружите, что половина его исчезнет, превратившись, в твердые элементы. Давление газа упадет наполовину. Сохраняйте его еще четыре дня, и половина остатка исчезнет, и т. д.

Пока атом радия еще является таковым, т. е. до момента, когда он взорвется, он имеет постоянные химические свойства определенного элемента, занимающего определенное место в периодической системе элементов. Когда атом радия излучает альфа-частицу, появляется новый атом — радон, который имеет другие свойства и переходит в другую клетку периодической системы. Он остается там до тех пор, пока в свою очередь не распадется. Новый атом является соответствующим элементом, опять нестабильным. Радон излучает альфа-частицу и становится «радием А» с 3-минутным периодом полураспада — «радий А» еще более нестабилен, чем радон. «Генеалогическое древо» продолжается через ряд нестабильных элементов. Некоторые из них излучают альфа-частицы, некоторые излучают бета-лучи. «Древо» заканчивается «радием G», который является одной из форм обычного, стабильного свинца. Таким образом, радиоактивность не только снабжает нас нужными снарядами, она также с очевидностью показывает, как один химический элемент спонтанно превращается в другой — естественную трансмутацию (превращение) элементов, не зависимую от человека (и, как казалось вначале, не контролируемую человеком). Приведенное в таблице «генеалогическое древо» показывает ряд радия от урана до свинца. (Действительное древо более сложное: есть боковые ветви, которые присоединяются к главной цепи. Имеется несколько других подобных же семейств, идущих более или менее параллельно, от начала, подобного урану, и оканчивающихся свинцом.)

В наши дни бомбардировкой стабильных атомов почти всех элементов частицами высоких энергий из больших ускорителей мы можем производить новые радиоактивные элементы каждый со своим «генеалогическим древом», хотя во многих случаях имеются только одна или две стадии, которыми превращения заканчиваются на стабильном атоме. Некоторые из новых радиоактивных элементов занимают место за ураном в периодической системе, например плутоний. Он распадается (совершая переходы, подобные описанным выше) на другие атомы вдоль «генеалогического древа», которое проходит сверху вниз через уран, подобно семейству радия. Таким образом, «генеалогическое древо» радия типично и для старых радиоактивных семейств, встречающихся в природе, и для многих новых семейств, начинающихся с элементов, которые мы производим при облучении.

В таблице, где показано «генеалогическое древо», символы, подобные Ra — Е, — старые, относящиеся к ранним химическим разделениям радиоактивных веществ. Атомы представлены дочерями, внучками и т. д. радия. Хотя они имеют совершенно различные химические свойства, они все носят фамильное имя радия. Теперь, при огромном изобилии радиоактивных атомов, естественных и искусственных, мы предпочитаем обозначать их стандартными символами химических элементов. "Например, радий В химически идентичен свинцу, и мы обозначаем его РЬ (свинец — plumbum по-латыни). При описании радиоактивных превращений мы обычно даем дополнительную информацию к символу. Так, радий В — это >82РЬ>214. Индекс 82 — «атомный номер» элемента, порядковый номер элемента в периодической системе. Все разновидности свинца имеют номер 82. Индекс 214 — «массовое число» атома — округленное значение массы атома в шкале, где масса водорода принята за 1. Разные изотопы свинца имеют разные атомные веса. Значение 214 — аномально высокое для свинца и позволяет ожидать нестабильности, вызванной переполнением ядра частицами.



В химии радиоактивных атомов нет ничего необычного, за исключением предельно малых количеств их, которые могут быть обнаружены и точно измерены по радиоактивности. Смешаем некоторое количество радия В с обычным свинцом как «носителем» и мы никогда не разделим их химически до тех пор, пока сам радий В сохраняется. Расплавим смесь: радиоактивность, обусловленная радием В, сохраняется. Растворим смесь в азотной кислоте и выкристаллизуем нитрат свинца: нитрат свинца берет с собой всю радиоактивность. Смешаем кристаллы с другими солями (калия, алюминия, вольфрама…), затем проведем анализ на свинец: вся радиоактивность выделяется со свинцом. Однако мы должны поспешить проводить эти химические эксперименты, так как радий В распадается с периодом полураспада 27 мин в радиоактивный висмут. Проводя химические операции медленно, мы будем находить все меньше радиоактивности, сопровождающей свинец, и все больше радиоактивности, связанной с висмутом. После получаса половина исходной радиоактивности


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.