Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [110]

Шрифт
Интервал

Каждый ионизующий «луч», попадающий в трубку, действует как триггер. Когда вы смотрите на счетчик или слушаете громкоговоритель, вы ожидаете свидетельства взрыва в единичном радиоактивном атоме. Число импульсов за секунду, измеренное счетчиком Гейгера, используется для измерения количества радиоактивного вещества. Трубка соединяется через усилитель со шкалой, которая регистрирует импульсы, обычно с помощью маленьких зажигающихся неоновых лампочек[130].

Другие счетчики используют меньшее электрическое поле — ниже порога лавинообразования. В этом случае величина импульса будет пропорциональна полной энергии ионизующей частицы. Величина импульса показывает, сколько ионов производит частица, и тем самым позволяет оценить первоначальную энергию частицы. Распады отдельных ядер можно регистрировать и с помощью электроскопов специальных конструкций — со шкалой, которая рассматривается в микроскоп.



Фиг. 55.Предварительное изучение счетчиков.

>Соедините батарею и лампу через сосуд с чистой водой. Добавьте горсть соли для создания в воде ионов: лампа загорится. Это устройство может служить счетчиком числа горстей, если после каждой вспышки производится выключение лампы и перенаполнение сосуда. 



Фиг. 56.Заряжайте конденсатор от высоковольтного источника до тех пор, пока поле в зазоре не достигнет величины, близкой к началу самопроизвольного проскакивания искры. Поднесите зажженную спичку к зазору: с треском проскочит искра. Это устройство может служить счетчиком числа зажженных спичек. Оно имеет довольно большое «время восстановлениям — источник должен зарядить конденсатор.



Фиг. 57.Гейгеровская счетная трубка.



Фиг. 58.Включение счетчика Гейгера.


Радиоактивный распад. Лабораторный эксперимент

Если вы можете получить небольшое количество радиоактивного материала с подходящим периодом полураспада, проделайте следующую серию измерений. Используйте скорость движения листочков электроскопа, или импульс/минута в счетчике как меру радиоактивности вашего образца.

Отложите на графике РАДИОАКТИВНОСТЬ В ФУНКЦИИ ВРЕМЕНИ (в днях). Ваш график должен выглядеть подобно графику I на фиг. 60.





Фиг. 60.Радиоактивный распад.

>1/2 Т — период полураспада.


График I показывает распад, но из него не следует постоянство периода полураспада. Причина этого может быть в том, что ваша оценка радиоактивности включает эффект фона в измеренную радиоактивность. Сделайте измерение фона без образца, вычтите его из каждого вашего результата и затем отложите разность на график. Существование фона является важным обстоятельством во многих научных измерениях. Для учета фона производится «холостой опыт» с реактивами в химии, выделяется «контрольная группа» в биологии, психологии, социологии.

После учета фона вы сможете оценить период полураспада из графика, подобного графику II, и вы должны убедиться в его постоянстве при длительных измерениях. Теперь возьмите логарифм каждого значения радиоактивности. В течение времени, равного периоду полураспада, величина радиоактивности делится на 2. Когда вы используете логарифмы, деление заменяется вычитанием логарифмов. За время полураспада логарифм радиоактивности должен уменьшиться на log 2 по сравнению с начальным значением. Если учтен фон, график log радиоактивности в функции времени (в днях) должен убывать на log 2 для каждого отрезка времени, равного периоду полураспада, т. е. должен быть прямой линией. Прямая линия — лучшее свидетельство чисто случайного (экспоненциального) распада радиоактивного вещества[131]. (См. график III.)


Структура атома

Электроны легко отделяются от атомов при бомбардировке. Это позволяет грубо представить атомы состоящими из нескольких электронов, слабо связанных с неким массивным остатком. Используя альфа-частицу для исследования атомов, мы находим, что все атомы в большей части своего объема пусты, а их легкие, слабо связанные электроны расположены снаружи, далеко от компактной массивной сердцевины.

Радиоактивные атомы показывают, что они сами нестабильны и могут испускать метательные снаряды высокой энергии. Мы видим, что частицы (и их энергия) исходят из сердцевины атома. Мы даже подозреваем, что все атомы, как стабильные, так и нестабильные, могут иметь субатомные частицы (α-частицы? электроны?…?…), локализованные в сердцевинах атомов и обладающие большим запасом энергии.

Полстолетия тому назад это были только важные допущения. Более поздние эксперименты и размышления над их результатами позволили сделать уточнения и построить полезную модель атома, в центре которого располагается ядро.






Задачи к главе 39


Задачи 1–5 — предварительные задачи, помещенные в конце предыдущей главы, задача 6 помещена в тексте этой главы.

Задача 7

Предположим, вы получили радиоактивную медь с периодом полураспада 10 мин.

а) Сколько периодов полураспада содержится в одном часе для этого образца?

б) Какая часть первоначального количества меди останется у вас через один час после получения?

в) Какая часть меди останется у вас через 2 часа после получения?


Задача 8

Фиг. 64 показывает часть диаграммы, составленной по данным, имеющимся в таблице, включенной в эту главу. Сделайте полную диаграмму для всей таблицы, используя данные, приведенные в таблице. Вы можете показать нестабильность атома (в таблице приведены периоды полураспада) с помощью волнистой линии, которую будете проводить на границе атома. Заметьте, что радий относится к той же группе химических элементов, что и барий, и имеет химические свойства, близкие свойствам бария, но он не является тем же химическим элементом, что и барий. Он может быть отделен от бария химически. Подобно этому, радон есть что-то, напоминающее гелий. Оба они являются инертными газами. В то же время радий В имеет химические свойства, совершенно точно совпадающие с химическими свойствами свинца. Это один и тот же элемент, и они неразделимы химически. Однако радий В нестабилен (—радиоактивен), а свинец стабилен.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.