Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [106]

Шрифт
Интервал



Фиг. 44. Фотография в камере Вильсона.

>α-лучи во влажном азоте. Один луч претерпел столкновение с ядром азота, и трек разделился, α-частица пошла вниз. Ядро отдачи — азот — дало короткий толстый трек (P. M. S. Вlасkett, Proc. Roy. Soc. Lond.). Источник излучения находится слева.



Фиг. 45.Стереоскопическая фотография в камере Вильсона.

>α-лучи во влажном гелии. Измерения показывают, что два луча «вилки», возникшей в результате столкновения, образуют между собой угол 90°(P. M. S. Вlackett, Ргос. Roy. Soc. Lond.). Источник излучения внизу фотографии.



Фиг. 46.Фотография в камере Вильсона.

>α-лучи во влажном водороде. Один луч претерпел столкновение с ядром водорода, которое пошло вперед и вверх, оставив более тонкий трек (Р. М. S. Blackett, Ргос. Roy. Soc. Lond.). Источник излучения находится слева.


(Инспектор Грегори):

«Есть ли еще какие-то моменты, на которые вы советовали бы мне обратить внимание?»

«На странное поведение собаки в ночь преступления».

«Собака? Но она никак себя не вела!»

«Это-то и странно», — сказал Холмс[125].

Удивительное заключается в том, что альфа-частица не изменяет свой трек. Это не просто результат высокой скорости.



Фиг. 47.Фотография в камере Вильсона.

>Трек β-лучей во влажном воздухе (С.Т. R. WiIsоn, Proc. Роу. Soc, Lond.). Источник излучения находится слева.


Если попытаться медленно прогнать биллиардный шар среди других таких же шаров, находящихся в покое, то он испытает много сильных столкновений. Если прогнать его очень быстро, то результат будет тем же самым. Только если остальные шары будут относительно легкими (шарики от пинг-понга), траектория движущегося шара будет прямой.

В каждом из многих малых столкновений альфа-частица «толкает» легкий электрон, без труда выбрасывая его из атома. Возникает загадка: где остаток каждого атома, который альфа-частица «толкнула»? Атомы массивны, и при рассмотрении остатков атомов возникают те же вопросы, что и при рассмотрении альфа-частиц. Добавим, что вместо того, чтобы отклониться или даже повернуть назад, альфа-частица проходит прямо через 200 000 атомов. Следовательно, остаток атома должен быть много меньше, чем мы думаем, так как он оказывается очень малой мишенью. Насколько малой? Никогда ли не бывает прямых столкновений? На фотографиях иногда встречаются треки, показывающие прямые столкновения с чем-то массивным. После столкновения массивный объект также оставляет трек. Таким образом, каждая альфа-частица дает трек, обусловленный слабыми столкновениями, и имеются лишь редкие случаи треков с изломами, которые показывают прямые столкновения. В воздухе альфа-частица может даже быть отброшена назад, и тогда объект столкновения дает толстый направленный вперед трек. В гелии треки имеют форму «вилок» с характерным углом между направлениями разлетающихся частиц. В водороде альфа-частицы всегда движутся вперед, и мишень (Н) также отлетает вперед, образуя более слабый трек.


Структура атома

Итак, из фотографий атомных событий мы ясно видим, что атомы в основном пусты и лишь во внешних их областях находятся легкие подвижные электроны. Атомы должны иметь очень маленькие массивные ядра, содержащие большую часть массы, — с ними быстрые альфа-частицы изредка сталкиваются. Измерения отклоненных треков (углы, счет водяных капель и др.) показывают, что эти редкие столкновения являются упругими, кинетическая энергия и момент сохраняются. Сталкивающиеся тела ведут себя подобно твердым упругим биллиардным шарам.

Как и при столкновении шаров, измерения углов позволяют нам узнать относительные массы. В воздухе альфа-частица сталкивается с объектом, имеющим массу, в несколько раз большую, чем ее собственная. В гелии «вилка» всегда составляет угол 90°, из чего можно заключить, что в этом случае альфа-частица сталкивается с объектом, имеющим массу, равную ее собственной (см. гл. 26, задача 22). Углы разлета частиц в водороде показывают, что сильные столкновения происходят с объектом, имеющим лишь >1/>4 массы альфа-частицы. Вспомним относительные атомные массы из химии:

водород 1, гелий 4, азот 14, кислород 16 и электрон (в той же шкале) 1/1840.

Измерения «вилок» дают для альфа-частицы массу 4, позволяя предположить, что она ион гелия. Если это гелий, то ничего удивительного нет в таких коротких и прямых треках — тяжелый, электрически заряженный атом гелия идет напролом через воздух и срывает электроны, в 7000 раз более легкие, чем он сам.



Фиг. 48.Фотография в камере Вильсона.

>Треки β-лучей. Один быстрый β-луч пересекает камеру. Другие треки принадлежат медленным лучам (С. Т. R. WiIsоn, Proc. Roy. Soc. bond.). Источник излучения находится слева.



Фиг. 49.Фотография в камере Вильсона.

>Электроны, выбитые из атомов пучком рентгеновских лучей, проходящих во влажном воздухе (слева направо). Пучок γ-лучей производит подобное действие, образуя меньшее количество более длинных треков (С. Т. R. WiIsоn, Ргос. Roy. Soc. Lond.).



Фиг. 50.Фотография в камере Вильсона.

>β-лучи в магнитном поле. Поле не очень сильное. Радиоактивный источник находится на поверхности цилиндра — в левой части рисунка (Е. С. Crittenden


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.