Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [107]

Шрифт
Интервал

>, Jr.).



Фиг. 51. Фотография в камере Вильсона.

>α-лучи в магнитном поле. Поле очень сильное. Обратите внимание на увеличение кривизны и заметный загиб у конца траектории, где частица уже замедлена многими столкновениями (П. Л. Капица) (из книги: Rutherford, Chadwick and Ellis, Radioactive Substances and their Radiations, Cambridge Univ. Press). Источник излучения находится слева.


Треки бета-лучей

Посмотрите на фотографию бета-лучей, проходящих во влажном воздухе. Длинные разбросанные треки с отдельными ионами здесь и там и с множеством искривлений. Картина ясная: быстрый электрон пролетает среди других электронов той же массы, находящихся во власти всех локальных электрических полей.


Треки гамма-лучей

Поток гамма-лучей сам по себе не дает видимых треков. Гамма-луч обычно идет прямо, подобно свету, проходящему через стекло, не оказывая никакого воздействия на вещество. Иногда он выбивает электрон, который освобождается с малой энергией отдачи. В конце концов гамма-луч встречает некоторый электрон в атоме, который он выбрасывает, передавая ему всю свою энергию. Такие электроны, излучаемые приблизительно во все стороны от пучка, дают разбросанные во все стороны треки, подобные трекам бета-лучей.


Разделение «лучей» электрическим и магнитным полями

Прежде чем изображения в камере Вильсона получили четкое объяснение, потоки «лучей» были проанализированы пропусканием их в вакууме через электрическое и магнитное поля. Отклонения в электрическом поле пропорциональны e/mv>2; в магнитном поле отклонения пропорциональны e/mv; сопоставление результатов позволяет найти v и е/m:

α) Альфа-частицы имеют положительный заряд; имеют е/М, составляющее ровно половину от е/М для водородных ионов, Н>+; излучаются с различными скоростями вплоть до 16 000 км/сек.

β) Бета-частицы имеют отрицательный заряд; имеют такое же отношение е/m, как электроны, эмиттируемые из нагретых нитей[126], и т. д. Это действительно электроны; излучаются с высокими скоростями вплоть до 294 000 км/сек (98 % скорости света).

γ) Гамма-лучи не имеют заряда; движутся прямо вперед, на них не воздействуют поля.

Таким образом, α- и β-лучи — это ускоренные частицы.



Фиг. 52.Наглядные диаграммы, показывающие траектории α-, β- и γ-лучей.

>а — в электрическом поле; б — в магнитном поле: в магнитном поле α-лучи изгибаются намного меньше, чем в электрическом (примерно в 100 раз). 


Гамма-лучи

Гамма-лучи ведут себя подобно очень коротковолновым рентгеновским лучам. Они испытывают дифракцию в кристалле — регулярно расположенные атомные слои в кристалле действуют, как микроскопическая дифракционная решетка. Они перемещаются со скоростью света и могут выбивать электроны из всех видов материи, т. е. обладают гигантским фотоэлектрическим действием.


Идентификация альфа-частиц

Ряд очевидных результатов указывает, что α-частица является дважды ионизованным атомом гелия Не>++: углы при столкновениях, сопоставление числа частиц и собранного заряда, измерение е/М. Резерфорд и Ройдс подтвердили эти результаты, собирая альфа-частицы, и доказали, что собранные альфа-частицы образуют гелий. Образец газа радона (дочерний продукт радия), излучающий альфа-частицы, был запаян в стеклянную трубку с очень тонкими стенками. Некоторые альфа-частицы, излучаемые радоном, проходили через тонкую стенку в наружную трубку. Пропускание через эту трубку искры позволяло наблюдать желтое свечение возрастающей интенсивности. Это свечение было характерным для гелия. С помощью дополнительных испытаний убедились в том, что гелий не мог натекать в трубку из воздуха.


Происхождение радиоактивности

Должны происходить бурные события, чтобы электроны вылетали из атомов со скоростями, близкими к скорости света; гелий с «++» зарядами выстреливался из других атомов с огромной скоростью. Эти частицы не могут быть продуктами обычных химических или физических взаимодействий, подобно СО>2, который выделяется из мела или идет пузырями из содовой воды. Когда радий и уран участвуют в химических превращениях, радиоактивность всегда их сопровождает. Не из этих ли материнских ядер вылетают частицы? Для ответа на этот вопрос необходимы представления о строении атома; альфа-частицы как исследовательские снаряды сами помогают создавать такие представления. Мы рассмотрим этот вопрос в гл. 40.


Радиоактивность и химия

Превращения радиоактивных атомов сами по себе открывают большой простор для исследований. В начале 1900-х годов физики и химики объединились для исследования химической природы радиоактивных элементов. Уран, радий и другие радиоактивные элементы не только излучают ионизующие лучи, но при этом полностью изменяют свою химическую природу. Они оказываются способными, будучи сначала одним химическим элементом, затем превращаться в другой химический элемент. Радий является металлом с большой плотностью и химическими свойствами, близкими к свойствам бария и кальция. Радий излучает альфа-частицы и медленно исчезает. Вместо него появляется новый элемент, тяжелый, совершенно инертный газ, сейчас называемый радоном. Этот газ принадлежит к семейству гелия, неона… — все они инертны, не вступают в химические взаимодействия. Мы знаем теперь, что, когда одиночный атом радия претерпевает «радиоактивный распад», он излучает одну альфа-частицу и становится атомом радона.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.