Физика для любознательных. Том 1. Материя. Движение. Сила - [144]

Шрифт
Интервал


Проверка пропорциональности

Каким образом можно убедиться в наличии прямой пропорциональности между величинами при анализе результатов измерений? В примере с картофелем эта зависимость[173] видна сразу. Нам же необходимо располагать простыми способами проверка в более запутанных случаях. Вот эти способы:

Способ I. Измеренное значение одной величины делят на значение другой и проверяют постоянство частного. В нашем примере:



и т. д., результат деления во всех случаях равен 2 кг на человека.

Это надежный способ проверки прямой пропорциональности. Разумеется, его можно применять двояким образом: если мы разделим число людей на массу картофеля, то получим еще один постоянный результат: >1/>4 человека на 1 кг.

Способ II.Графики. Французский математик и философ Декарт, который жил вскоре после Галилея, изобрел метод построения графиков в координатах x и y. Сегодня мы видим в графиках нечто само собой разумеющееся и читаем их так же легко, как печатный текст. Может даже появиться опасность, что, скажем, позволив газетам представлять все наши статистические данные в форме графиков, мы воспитаем целое поколение верхоглядов, отвыкших вдумываться в слова и цифры статистики. В то же время несколько поколений назад многие считали графики запутанными и сложными. В наше время нужно научиться аккуратно и быстро строить графики и так же быстро читать их. Для этого лучше пользоваться некоторыми стандартными масштабами и приучиться соблюдать принятую точность построения, оценивая десятые доли деления.

Графики служат превосходным средством выражения зависимости между величинами. Совокупность результатов наблюдения двух величин (например, числа людей и количества картофеля) можно представить в виде совокупности точек, откладывая в удобном масштабе значения одной, измеряемой величины по вертикали, а другой — по горизонтали. Расположение точек показывает зависимость между двумя измеряемыми величинами. На фиг. 294 построен график А по приведенным выше данным о количестве людей и потребляемого ими картофеля. Сами по себе эти данные не дают нам права вставлять промежуточные точки, как если бы мы знали потребности любого возможного (даже дробного) числа людей. Однако мы можем предположить, что промежуточные точки ничуть не менее законны, чем те, по которым мы построили график.



Это позволит обеспечить продовольствием любое другое число людей. Чтобы найти (или продемонстрировать) соотношение между нашими данными, мы перейдем, забегая вперед, к простейшему соотношению между двумя величинами — к прямой связи или прямой пропорциональности — и будем от нее отталкиваться. Предположим, известно, что масса картофеля Р находится в прямой связи с числом людей N, и мы хотим предсказать вид зависимости Р от N. Мы знаем, что отношение P/N постоянно. Для любой точки на графике P/N характеризует наклон линии, соединяющей данную точку с началом координат.

Поэтому проведенные из начала координат до каждой точки прямые должны иметь одинаковый наклон и должны слиться в одну. Таким образом, все точки лежат на одной прямой, проходящей через начало координат. Если же все точки, определяющие зависимость Р от N, лежат на одной прямой, проходящей через начало координат, то мы можем сказать, что отношение P/N постоянно.

График в этом случае представляет собой прямую, проходящую через начало координат, и показывает, что масса картофеля возрастает в прямой пропорции к числу едоков.


Линейная зависимость

Графики В и С на фиг. 295 обнаруживают «линейную зависимость» между величинами x и y.



На графике В все нанесенные точки х>1у>1 и т. д. лежат на прямой, проходящей через начало координат 0,0. Заштрихованные треугольники подобны: отношение высоты к основанию y/x, определяющее наклон гипотенузы, у них одно и то же. На графике С точки х>5у>5 и т. д. лежат на прямой, которая не проходит через начало координат 0,0, и мы не можем говорить о прямой связи или пропорциональности между у и х.

Гипотенузы заштрихованных треугольников имеют неодинаковый наклон, и нельзя утверждать, что все отношения y>5/x>5y>6/x>6y>7/x>7 и т. д. одинаковы. Отыскивая соотношение между у и х, мы должны быть внимательны и иметь это в виду. Тем не менее очевидно, что между этими величинами существует какая-то зависимость, изображаемая графиком С. Если выбрать начало координат на самой прямой, то это вернуло бы нас к прежним простым рассуждениям. Это можно сделать, рассматривая приращения (или изменения) х и у по отношению к их значениям в выбранной точке на прямой. Так, на графике D (фиг. 296) мы провели новые оси координат (они показаны пунктиром). Если теперь вести отсчет от новой начальной точки 0', то можно сказать: (приращение величины у по отношению к ее значению в О') изменяется прямо пропорционально (приращению х), т. е. Δу ~ Δх. Математический символ Δ означает «приращение», или «изменение», такой-то величины. В случае графика D можно записать, что Δу ~ Δх, или сказать, что величина Δух, постоянна (для всех точек прямой).



Мы можем поступить и по-другому, как это сделано на примере графика Е (фиг. 297).



Можно переходить от точки к точке, каждый раз фиксируя при этом изменения


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.