Физика для любознательных. Том 1. Материя. Движение. Сила - [146]

Шрифт
Интервал


Прямая зависимость или пропорции

Проводя пробную прямую, мы задаем вопрос: «Имеет ли место линейная зависимость?». Мы должны прежде всего попытаться провести прямую через начало координат, даже если в начале координат нет ни одной экспериментальной точки. Это требование, возможно, бессмысленно. Так, на фиг. 299 дан график G для лагеря, в котором повара тоже едят картофель, но не входят в число обитателей.



Пунктирная прямая, проведенная через начало координат, заметно уклоняется от ряда точек, тогда как сплошная прямая проходит вблизи всех точек. В этом случае правильнее записать

ΔP ~ ΔN или ΔP = 2,1∙ΔN.

Прямая отсекает на вертикальной оси отрезок, равный 21,0, и мы можем написать

P = 21 + 2,1∙N.

Можно сказать, что персонал кухни съедает 21 кг картофеля в неделю и состоит, по-видимому, из десяти человек.


Указания к построению графиков

Приближенные графики. В процессе опыта бывает желательно сразу построить приближенный график, который позволит определить, достаточно ли проделано измерений. Здесь можно обойтись карандашом и бумагой в клетку (например, 0,5 см х 0,5 см).

Точные графики. Чтобы строить графики, которые можно легко читать и в то же время использовать для точной проверки результатов эксперимента, мы рекомендуем следовать приводимым ниже правилам.

Бумага. Строить графики нужно на бумаге, разграфленной на сантиметры и миллиметры, так называемой миллиметровке. Миллиметровые клетки можно делить на глаз на десятые доли (т. е, на сотые доли сантиметра). Бóльшие или меньшие клетки трудно делить на глаз с приемлемой точностью.

Масштаб. При построении графиков следует пользоваться такими масштабами, чтобы легко было наносить точки, умножая и деля числа на десять. Предположим, вы наносите на график значения массы в килограммах. Самый удобный масштаб — в 1 см 1 кг; выражать в 1 см 10 кг, 100 кг… или 0,1 кг… и т. д, тоже удобно. Следующая удобная для пользования серия масштабов: в 1 см 2 кг, 20 кг…, 0,2 кг… и т. д. При этих масштабах результаты измерений делят в уме на два и прямо наносят на график.

Еще одна серия масштабов, облегчающих построение графиков: в 1 см 5 кг, 50 кг…, 0,5 кг… и т. д. В этом случае нужно в уме удваивать результаты измерений передаем, как наносить их на график. Все другие масштабы, например 4 кг в 1 см и т. д., неудобны для пользования и обычно приводят к ошибкам при построении. Поэтому следует пользоваться одним из приведенных выше масштабов.

Масштабы нужно выбрать так, чтобы график занимал 10–15 см по горизонтали и столько же по вертикали, — нет смысла растягивать график в одном направлении и ужимать в другом. Наклон графика должен составлять, скажем, от 30 до 60° с горизонтальной осью координат. При этом, возможно, придется выбрать разные масштабы по обеим осям.

Прямая. Чтобы найти положение «наилучшей прямой» после того, как нанесены экспериментальные точки, воспользуйтесь натянутой нитью и проведите прямую. Затем нарисуйте маленькие кружки вокруг каждой экспериментальной точки (или прямоугольнички, если вы располагаете необходимыми данными). Сначала проведите прямую, иначе кружки будут вас смущать. Если прямая линия кажется неподходящей, проведите плавную кривую.


Интерполяция и экстраполяция

Даже если прямая линия кажется неподходящей и вы проводите просто плавную кривую через эти точки (или вблизи них), то график дает возможность получить дополнительные данные.

Предполагая, что кривая правильно описывает работу прибора, можно с уверенностью проставить промежуточные точки и определить новые значения, не являющиеся результатом непосредственных измерений. Эта процедура называется интерполяцией. Можно также продолжить кривую и определить значения величины за пределами той области, в которой получены данные. Этот процесс называется экстраполяцией. Например, если вы знаете, что поезд выходит из Бостона в 14.00 и прибывает в Нью-Йорк в 18.00, то могли бы путем интерполяции определить, когда он проходит через Нью-Хейвен. Можно было бы также путем экстраполяции определить время прибытия поезда в Вашингтон, но это сопряжено со значительно большим риском, так как Нью-Йорк может быть конечной остановкой поезда.

Очевидно, и интерполяцию, и экстраполяцию выполнить проще, если график — прямая линия. Но даже в этом случае интерполяцию и экстраполяцию нельзя считать одинаково надежными источниками информации. Как вы думаете, какой из этих обоих приемов представляет большую ценность? В заключительной главе всего курса, когда будет идти речь об успехах науки, вы увидите, какую важную роль играют интерполяция и экстраполяция.


Задача 7

Вычисление


на счетной линейке дает значение 375, в котором запятая не проставлена. Определите положение запятой, четко объяснив, каким методом ею пользовались.


Задача 8. Стандартная запись чисел

Выразите числа, которыми, представлены приведенные ниже данные, в стандартной форме.

Плотность ртути d>Hg =13 600 кг/м>3.

Расстояние от Луны до Земли R = 380 000 км.

Заряд электрона = —0,000 000 000 000 000 00016 кулон.


Задача 9

«Кинетическая энергия» (= энергия движения) массы М кг, движущейся со скоростью


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.