Физика для любознательных. Том 1. Материя. Движение. Сила - [145]

Шрифт
Интервал

и х. Тогда какие бы точки на прямей мы ни выбрали, можно сказать, что Δу ~ Δх или что Δух постоянно, ибо мы всегда получаем подобные треугольники. (Правда, в этом случае Δу и Δх имеют несколько иной смысл.) Для графиков С и D отношение Δух дает наклон прямой точно так же, как отношение у/х определяет наклон прямой графика А. Величина наклона представляет собой ту постоянную, которая фигурирует в формуле прямой пропорциональности.

Обычно поступают следующим образом. Прежде всего результат наблюдений изображают графически точками на плоскости. Затем, отыскивая простую зависимость между интересующими нас величинами, проводят прямую — она как раз изображает такую зависимость — и проверяют, насколько хорошо точки укладываются на эту прямую. Стараются провести «наилучшую» прямую, которая проходила бы «как можно ближе к возможно большему числу точек». (Это указание относительно «наилучшей» прямой, несмотря на внешне безупречную формулировку, не выдерживает строгого логического анализа, и все же смысл указания ясен — примите его как некий неписаный закон.) Желая проверить, существует ли прямая зависимость (прямая пропорциональность) между наносимыми значениями у и х (у ~ х), прямую пытаются провести через начало координат. Если такая прямая существенно отклоняется от точек, то следует взять другую прямую, не проходящую через начало координат, и проверить, что Δу ~ Δх. В любом случае «наилучшая прямая» — это, так сказать, «пробная» прямая. Она не представляет собой ни формулировку правильного ответа, ни попытку увязать друг с другом нанесенные точки с учетом экспериментальных ошибок. Прямая является лишь графическим выражением простой зависимости, которую мы рассчитываем обнаружить. Проводя эту прямую наряду с нашими точками, мы хотим сопоставить искомую зависимость с реальными фактами, ибо точки выражают фактические результаты наблюдений.

Если нам удастся провести прямую, которая мало отклоняется от нанесенных точек, то можно будет сказать, что наблюдения хорошо представляются выбранной зависимостью. Мы можем даже говорить здесь о точном представлении (что бы ни означало такое утверждение) и приписывать небольшие расхождения на графике ошибкам, допущенным нами самими при наблюдении. Эта ссылка на «экспериментальную ошибку» удобна и служит нам утешением, пока мы не рассмотрим внимательно, в чем тут дело. А тогда мы убедимся, что на самом деле мы невнимательные экспериментаторы или орудуем с очень плохими приборами. Уточняя «насколько невнимательные?» или «насколько плохие?», мы можем указать разумные пределы ошибок. Если отклонения точек лежат в этих пределах, то мы с уверенностью скажем, что выбранная простая зависимость во всяком случае удовлетворительно описывает факты.

На графике F (фиг. 298) представлены данные, относящиеся к двум лагерям, обитатели которых принадлежат, так сказать, к двум типам едоков. Там же проведены наилучшие прямые. Данные эти вымышленные, но напоминают настоящие, потому что они не ложатся точно на прямую, как округленные числа в первоначальном примере, а разбросаны относительно нее. Если считать, что прямые линии выражают действительную зависимость, которой подчиняются данные, то каждой прямой можно сопоставить соотношение вида P ~ N. Мы можем даже записать

P = 4,1∙N для одной прямой

и

P = 8,0∙N для другой.

Постоянную (4,1 или 8,0) лучше всего определять по наклону прямой, а не по отдельным точкам или части данных. Проводя прямую линию, наименее уклоняющуюся от точек, мы автоматически находим среднее взвешенное значение.



Средние взвешенные значения

Среднее взвешенное — это такое среднее, при нахождении которого приписывают добавочный вес наиболее надежным данным и очень малый вес данным, содержащим, по-видимому, грубые ошибки. Определяя такое среднее арифметически, мы придаем большой вес достоверным данным, учитывая их при составлении суммы несколько раз, в то время как ненадежные данные учитываются только один раз. Потом мы делим сумму на число всех слагаемых, разумеется, считая слагаемые, которые брались повторно. Этот способ усреднения вполне приемлем и разумен, но таит в себе опасность. Дело в том, что он может побуждать нас получить как раз такой ответ, который мы надеемся получить!

Проводя прямую по точкам, мы замечаем следующее. Может получиться, что почти все точки хорошо укладываются на прямую, а одна или две точки отстоят далеко от нее. Если мы в конечном счете выбираем эту прямую, то ее наклон дает среднее взвешенное значение, при этом одна или две «выскочившие» имеют очень малый вес. Выпадение этих точек может быть результатом небрежности, и мы поступим разумно, если по существу пренебрежем ими. С другой стороны, большинство точек может укладываться на прямую из-за случайных ошибок; кроме того, немногочисленные выпадающие точки могут послужить ключом к важным выводам. Таким образом, есть опасность, что, проводя прямую по экспериментальным точкам, мы явимся жертвой предвзятого подхода к задаче. Но при достаточно внимательном отношении и хорошем навыке можно надеяться получить взвешенное среднее, которое будет достаточно надежным.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.