Физика для любознательных. Том 1. Материя. Движение. Сила - [143]
Так было с оценкой размера атома столетие назад, так обстоит дело с определением радиуса Вселенной (если он вообще не бесконечен) в наши дни. Во многих случаях достаточно произвести измерение с точностью до порядка величины. Например, когда речь идет о росте температуры, достаточно малом, чтобы им можно было пренебречь, или о весе, заведомо настолько большом, что поверхностное натяжение можно считать несущественным, то же самое можно сказать об определении приближенной даты исторического события, когда излишнее уточнение даты только отвлекает внимание от сущности события.
Если результаты представлены в стандартной форме, например
z = 2,34 х 10>6 и w = 7,8 х 10>3
то их порядки величины будут
z ~ 10>6 и w ~ 10>4.
Вы несомненно найдете применение знакам
в своей работе, чем бы вы ни занимались, и привыкнете проводить между ними различие. Заметьте, что символы эти не вполне установившиеся. Некоторые авторы и издатели заменяют символ другими знаками.Пропорциональная зависимость — ключ ко многим законам
Выражая наши знания о природе в виде простых законов, мы прежде всего ищем постоянство в явлениях: масса тела остается постоянной, полный электрический заряд тоже, количество движения сохраняется неизменным, все электроны одинаковы. Почти столь же простой и плодотворный принцип выражает прямая пропорциональность между величинами, при которой две измеряемые величины возрастают в одинаковой пропорции: удлинение пружины при увеличении нагрузки, сила и ускорение, давление и плотность газа.
Мы говорим, что для пружины (в пределах действия закона Гука)
УДЛИНЕНИЕ пропорционально НАГРУЗКЕ
или
УДЛИНЕНИЕ изменяется прямо пропорционально[171] НАГРУЗКЕ.
Это записывают в виде
УДЛИНЕНИЕ ~ НАГРУЗКА.
Как и процентам, в элементарных курсах часто отводят особое место пропорциям и функциональной зависимости, и эти понятия кажутся чем-то таинственным и труднодоступным. Не будь этого, их считали бы очевидными с точки зрения здравого смысла. Рассмотрим несколько простых примеров.
Пример В. Предположим, что при снабжении картофелем некоего лагеря недельные потребности определяются следующим образом:
для лагеря на 100 человек требуется 200 кг картофеля
… 200… 400…
… 300… 600…
… 500… 1000…
Масса картофеля возрастает пропорционально размерам хозяйства. Это простейший тип соотношения между двумя величинами, с которым мы так часто встречаемся в физике[172].
Можно сформулировать это соотношение несколькими способами:
1) МАССА КАРТОФЕЛЯ пропорциональна ЧИСЛУ ЛЮДЕЙ;
2) МАССА КАРТОФЕЛЯ изменяется прямо пропорционально ЧИСЛУ ЛЮДЕЙ;
3) МАССА КАРТОФЕЛЯ ~ ЧИСЛУ ЛЮДЕЙ (это сокращенная запись формулировок 1 и 2);
4) МАССА КАРТОФЕЛЯ = (ПОСТОЯННАЯ)∙(ЧИСЛО ЛЮДЕЙ).
Варианты 1 и 2 (и их математическая запись — вариант 3) — это просто попытки дать формулировку простым в очевидным вещам. «Две величины возрастают в одинаковой пропорции. Если удвоить одну из них, то удваивается вторая, если утроить одну, — утраивается вторая, и т. д.».
Имея это в виду, можно легко решать задачи, не вычисляя «постоянную», содержащуюся в записи варианта 4. Например, известно, что для 100 человек требуется 200 кг картофеля. Сколько потребуется его для 600 человек? Для вшестеро большего числа людей требуется в 6 раз больше продовольствия: 1200 кг.
Пример Г. Объем шара изменяется пропорционально третьей степени радиуса. Шар увеличен так, что радиус его стал в 5 раз больше первоначального. Что произойдет с его объемом? Если радиус увеличивается в 5 раз по сравнению с первоначальным, то величина (радиус)>3 возрастает в 5>3 раз по сравнению с первоначальным значением (поскольку R>3 = R∙R∙R и 5R∙5R∙5R = 5>3∙R>3). Следовательно, объем возрастает По сравнению с первоначальным в 125 раз. Это должно быть следствием здравого смысла, дли которого вовсе не нужно обращаться к соотношению 4/3πR>3.
«Коэффициент пропорциональности»
Формулировка 4
МАССА КАРТОФЕЛЯ = (Постоянная)∙ЧИСЛО ЛЮДЕЙ
очень похожа на запись варианта 3, но для специалиста формулировка 4 не столь четко выражает идею зависимости между величинами. Поэтому советуем избегать ею пользоваться, если только можно получить нужный результат, прибегнув к здравому смыслу, как в приведенных выше двух примерах.
Для каждой пары значений в примере с картофелем, очевидно, справедливо соотношение
МАССА КАРТОФЕЛЯ Р = 2N∙ЧИСЛО ЛЮДЕЙ,
поэтому все четыре случая можно описать с помощью формулы P = 2N. Сущность этой записи в том, что она выражает зависимость между величинами: дело не в конкретном значении 2, а в том, что это число остается одним и тем же, т. е. постоянным. (Фактически это потребление картофеля, приходящееся на одного человека, т. е. 2 кг на человека.) Поскольку число 2 постоянно, мы можем записать
Р = (Постоянная)∙N.
Эта общая формулировка применима и к случаю, когда в лагерь собираются люди, потребляющие много картофеля, и на одного человека уходит уже 5 кг картофеля. Тогда наша форма примет вид P = 5∙N. (Конечно, если одни обитатели лагеря съедают по 2 кг картофеля в неделю, а другие по 5 кг, то вся схема рассуждений теряет силу. Надо иметь в виду, что такая же опасность существует и при выводе научных законов).
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.