Физика для любознательных. Том 1. Материя. Движение. Сила - [143]
Так было с оценкой размера атома столетие назад, так обстоит дело с определением радиуса Вселенной (если он вообще не бесконечен) в наши дни. Во многих случаях достаточно произвести измерение с точностью до порядка величины. Например, когда речь идет о росте температуры, достаточно малом, чтобы им можно было пренебречь, или о весе, заведомо настолько большом, что поверхностное натяжение можно считать несущественным, то же самое можно сказать об определении приближенной даты исторического события, когда излишнее уточнение даты только отвлекает внимание от сущности события.
Если результаты представлены в стандартной форме, например
z = 2,34 х 10>6 и w = 7,8 х 10>3
то их порядки величины будут
z ~ 10>6 и w ~ 10>4.
Вы несомненно найдете применение знакам
Пропорциональная зависимость — ключ ко многим законам
Выражая наши знания о природе в виде простых законов, мы прежде всего ищем постоянство в явлениях: масса тела остается постоянной, полный электрический заряд тоже, количество движения сохраняется неизменным, все электроны одинаковы. Почти столь же простой и плодотворный принцип выражает прямая пропорциональность между величинами, при которой две измеряемые величины возрастают в одинаковой пропорции: удлинение пружины при увеличении нагрузки, сила и ускорение, давление и плотность газа.
Мы говорим, что для пружины (в пределах действия закона Гука)
УДЛИНЕНИЕ пропорционально НАГРУЗКЕ
или
УДЛИНЕНИЕ изменяется прямо пропорционально[171] НАГРУЗКЕ.
Это записывают в виде
УДЛИНЕНИЕ ~ НАГРУЗКА.
Как и процентам, в элементарных курсах часто отводят особое место пропорциям и функциональной зависимости, и эти понятия кажутся чем-то таинственным и труднодоступным. Не будь этого, их считали бы очевидными с точки зрения здравого смысла. Рассмотрим несколько простых примеров.
Пример В. Предположим, что при снабжении картофелем некоего лагеря недельные потребности определяются следующим образом:
для лагеря на 100 человек требуется 200 кг картофеля
… 200… 400…
… 300… 600…
… 500… 1000…
Масса картофеля возрастает пропорционально размерам хозяйства. Это простейший тип соотношения между двумя величинами, с которым мы так часто встречаемся в физике[172].
Можно сформулировать это соотношение несколькими способами:
1) МАССА КАРТОФЕЛЯ пропорциональна ЧИСЛУ ЛЮДЕЙ;
2) МАССА КАРТОФЕЛЯ изменяется прямо пропорционально ЧИСЛУ ЛЮДЕЙ;
3) МАССА КАРТОФЕЛЯ ~ ЧИСЛУ ЛЮДЕЙ (это сокращенная запись формулировок 1 и 2);
4) МАССА КАРТОФЕЛЯ = (ПОСТОЯННАЯ)∙(ЧИСЛО ЛЮДЕЙ).
Варианты 1 и 2 (и их математическая запись — вариант 3) — это просто попытки дать формулировку простым в очевидным вещам. «Две величины возрастают в одинаковой пропорции. Если удвоить одну из них, то удваивается вторая, если утроить одну, — утраивается вторая, и т. д.».
Имея это в виду, можно легко решать задачи, не вычисляя «постоянную», содержащуюся в записи варианта 4. Например, известно, что для 100 человек требуется 200 кг картофеля. Сколько потребуется его для 600 человек? Для вшестеро большего числа людей требуется в 6 раз больше продовольствия: 1200 кг.
Пример Г. Объем шара изменяется пропорционально третьей степени радиуса. Шар увеличен так, что радиус его стал в 5 раз больше первоначального. Что произойдет с его объемом? Если радиус увеличивается в 5 раз по сравнению с первоначальным, то величина (радиус)>3 возрастает в 5>3 раз по сравнению с первоначальным значением (поскольку R>3 = R∙R∙R и 5R∙5R∙5R = 5>3∙R>3). Следовательно, объем возрастает По сравнению с первоначальным в 125 раз. Это должно быть следствием здравого смысла, дли которого вовсе не нужно обращаться к соотношению 4/3πR>3.
«Коэффициент пропорциональности»
Формулировка 4
МАССА КАРТОФЕЛЯ = (Постоянная)∙ЧИСЛО ЛЮДЕЙ
очень похожа на запись варианта 3, но для специалиста формулировка 4 не столь четко выражает идею зависимости между величинами. Поэтому советуем избегать ею пользоваться, если только можно получить нужный результат, прибегнув к здравому смыслу, как в приведенных выше двух примерах.
Для каждой пары значений в примере с картофелем, очевидно, справедливо соотношение
МАССА КАРТОФЕЛЯ Р = 2N∙ЧИСЛО ЛЮДЕЙ,
поэтому все четыре случая можно описать с помощью формулы P = 2N. Сущность этой записи в том, что она выражает зависимость между величинами: дело не в конкретном значении 2, а в том, что это число остается одним и тем же, т. е. постоянным. (Фактически это потребление картофеля, приходящееся на одного человека, т. е. 2 кг на человека.) Поскольку число 2 постоянно, мы можем записать
Р = (Постоянная)∙N.
Эта общая формулировка применима и к случаю, когда в лагерь собираются люди, потребляющие много картофеля, и на одного человека уходит уже 5 кг картофеля. Тогда наша форма примет вид P = 5∙N. (Конечно, если одни обитатели лагеря съедают по 2 кг картофеля в неделю, а другие по 5 кг, то вся схема рассуждений теряет силу. Надо иметь в виду, что такая же опасность существует и при выводе научных законов).
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Александр Дементьев – журналист (работал в таких изданиях, как РБК, «Ведомости», Лента.ру), закончил МПГУ (бывш. МГПИ им. Ленина) по специальности общая и экспериментальная физика. Автор самого крупного научно-популярного канала «Популярная наука» на «Яндекс. Дзен». Перед вами – уникальная книга, которая даст возможность по-новому взглянуть на космос. Человечество стоит на пороге больших открытий за пределами нашей планеты. И они кардинально изменят жизнь людей! Из книги вы узнаете: • Что ждет Землю и Солнце в будущем.
Квантовая физика – очень странная штука. Она утверждает, что одна частица может находиться в двух местах одновременно. Больше того, частица – это еще и волна, и все происходящее в квантовом мире может быть представлено как взаимодействие волн – или частиц, как вам больше нравится. Все это было понятно уже к концу 1920-х годов. За это время было испробовано немало разных более или менее убедительных интерпретаций. Известный популяризатор науки Джон Гриббин отправляет нас в захватывающее путешествие по «большой шестерке» таких объяснений, от копенгагенской интерпретации до идеи множественности миров. Все эти варианты в разной степени безумны, но в квантовом мире безумность не равносильна ошибочности, и быть безумнее других не обязательно значит быть более неверным.
Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.
Что случилось с Венерой? Как Сатурн стал властелином колец? Где искать Девятую планету? Почему мы не видим облако Оорта? Что мы знаем о самой большой звезде? Как живут звезды после смерти? Как галактики воруют друг у друга? Как сфотографировать черную дыру? Какая галактика самая большая? Эта книга отправит вас в космическое путешествием вместе с экспертами журнала New Scientist. Стартуя от Солнца, мы посетим планеты земной группы, газовые гиганты и их спутники, пересечем облако Оорта и выйдем за границы Млечного Пути.
Автор книги рассказывает о своем жизненном пути — от рабочего до ученого, доктора физико-математических наук, о важнейших событиях минувших десятилетий, об участии в них замечательных советских ученых. Он вспоминает об интересных встречах и дружбе с выдающимися деятелями физической науки, внесших большой вклад в ее дальнейшее развитие.
В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.