Физика для любознательных. Том 1. Материя. Движение. Сила - [120]

Шрифт
Интервал

а) Какой мяч полетит дальше (если не принимать во внимание влияние вращения и трение воздуха)?

б) На какой мяч будет действовать бóльшая отклоняющая сила (вызванная только что разобранным эффектом Бернулли)?

в) Какой мяч больше отклонится в сторону? Четко обоснуйте ваш ответ на этот вопрос.


ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ

Опыт 7. Полет по искривленному пути. Пробковый мяч бросают с помощью трубки, сделанной из грубого картона. Бросающий держит трубку в отведенной назад руке и бросает мяч, замахиваясь трубкой вперед. Мяч, «отстающий» от движения трубки, катится по внутренней верхней поверхности трубки и приобретает быстрое вращение вокруг горизонтальной оси. Его отклонение вверх при полете видно глазом (фиг. 248).



Фиг. 248.Бросание вращающегося мяча.


Опыт 8. Картонный цилиндр бросают с помощью катапульты, которая одновременно сообщает ему вращение (фиг. 249). Кусок резинового шнура ABC прикреплен к столу в точках А и С. Центр шнура В соединен с цилиндром куском матерчатой ленты, которая несколько раз обертывается вокруг центральной части цилиндра. Оттягивая цилиндр по столу, растягиваем резину, а затем отпускаем ее. Бернуллиевы силы столь велики, что цилиндр может даже описать петлю.



Фиг. 249.Бросание вращающегося цилиндра с помощью катапульты.


Полет самолета

Ламинарный поток, обтекающий модель крыла самолета, можно сделать видимым, подкрасив воду чернилами или добавив в воздух дым. Тогда отчетливо видно сгущение линий тока над крылом. Поскольку давление над крылом меньше, чем под ним, то эффект Бернулли создает подъемную силу. Но каким образом крыло создает такое благоприятное распределение линий тока?

Геометрия и механика говорят, что в идеальной жидкости, лишенной внутреннего трения, распределение линий тока было бы более симметричным, без сгущений над крылом, и поэтому не было бы ни подъемной силы, ни силы сопротивления. Но в воздухе и в воде в момент старта самолета вокруг крыла создается циркуляция воздуха, подобно колечку дыма, которая движется далее вместе с самолетом (фиг. 250).



Фиг. 250. Циркуляция вокруг крыла самолета.


Вихревое движение складывается с постоянным потоком воздуха навстречу самолету и дает суммарное распределение линий тока, подобное распределению вокруг летящего вращающегося цилиндра (крыло не вращается, но его форма создает циркуляцию воздуха). Этот вихрь не мажет окончиться на кромке крыла и продолжает существовать позади самолета. Когда самолет улетает, крыло уносит с собой часть вихря, оставляя за крыльями струйки вихрей. (Именно вихри позади самолета срывают вашу шляпу, когда вы стоите слишком близко к взлетающему самолету).


Сопротивление ветра («давление» ветра[149])

Летящий самолет оставляет позади себя циркулирующий воздух, который стекает с его крыльев и фюзеляжа. Таким образом, в воздухе позади крыла создается довольно большое вихревое движение (со значительной кинетической энергией), и его масса движется вперед. Крыло непрерывно теряет количество движения и, следовательно, испытывает силу, направленную назад, «сопротивление» воздуха; корпус самолета должен тащить крыло вперед, чтобы компенсировать потерю количества движения. В целом при равномерном полете самолет не выигрывает и не теряет количества движения. Его пропеллер отбрасывает назад поток воздуха, сообщая этому воздуху количество движения, направленное назад, в то время как крыло и фюзеляж оставляют струю вихрей с количеством движения, направленным вперед. Таким образом, позади самолета возникает сложное движение воздуха, в котором суммарное количество движения равно нулю[150].



Фиг. 251.Идеализированная картина ламинарного потока.

>При действительном полете позади самолета образуется вихревое движение.


В какой мере сопротивление воздуха, действующее на крыло самолета или на любой другой предмет, образующий вихри, зависит от скорости полета? Летящее со скоростью v крыло оставляет за собой слой воздуха, движущийся вслед за крылом. Обозначим через А площадь поперечного сечения этого слоя, «вертикальное лобовое сечение» крыла (фиг. 252).



Фиг. 252.За движущимся крылом остается движущийся вперед воздух.

>Скорость его на самом деле составляет лишь часть скорости самолета v (для простоты мы принимаем ее равной v). При реальном полете движущийся воздух не имеет формы «бруска» — движение передается в стороны и воздух перемешивается благодаря вихрям.


Пусть действующая на крыло сила сопротивления, обусловленная непрерывной потерей количества движения, равна F. Чтобы рассчитать величину F, допустим для начала, что слой воздуха приобретает полную скорость крыла v.

Тогда, согласно F∙Δt = Δ(mv),

(сила F)∙(времяt, сек) = количество движения, потерянное крылом за t сек,

= количество движения, приобретенное за t сек слоем воздуха, приходящим в движение позади крыла.

За t сек крыло продвигается вперед на расстояние vt, оставляя за собой слой движущегося воздуха длиной vt и площадью А, следовательно, объем этого слоя равен Avt.

Этот воздух имеет:

МАССА = (ПЛОТНОСТЬ)∙(ОБЪЕМ), или (d)∙(Avt).

Если скорость равна v, то количество движения равно

(МАССА)∙(ПРИОБРЕТАЕМАЯ СКОРОСТЬ), или (


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Ядерная зима. Что будет, когда нас не будет?

6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.


О движении

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Золотое правило

В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.



Неизвестный алмаз. «Артефакты» технологии

В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.


Вторжение в физику 20-го века

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.