Физика для любознательных. Том 1. Материя. Движение. Сила - [118]

Шрифт
Интервал

Это несколько туманное рассуждение справедливо в рамках обсуждаемого вопроса — разность давлений вызывает ускоренное движение жидкости. Чтобы развить его дальше, следовало бы подробно обсудить вопрос об энергии. Пока мы будем применять принцип Бернулли в приведенной выше расплывчатой формулировке — при ламинарном течении давление меньше там, где быстрее течение. Он неприменим к вихревому или турбулентному течению. Даже при ламинарном течении этот принцип неприменим при перемещении от одной линии тока к другой, потому что ни один элемент не может двигаться поперек линий тока; однако, поскольку поперечных течений нет, большой разности давлений, вообще говоря, не возникает при переходе от одной линии тока к соседней.

Принцип Бернулли важен, но он не является тем фундаментальным законом физики, который всем необходимо знать. Он приведен здесь как пример необычного поведения, которое может быть «объяснено» на основе общих знаний без особых законов, придуманных специально для этой цели[145].


Примеры эффекта Бернулли

На фиг. 242, а струя воздуха обдувает открытый конец трубки, погруженной в жидкость. Воздух в области А движется быстрее, чем в области В, где он смешивается с атмосферным воздухом. Поэтому давление в А ниже атмосферного, и атмосферное давление в D может поднять жидкость по трубке, где она распыляется. На Фиг. 242, б показаны два шарика для пинг-понга, подвешенные на гибких проволочках недалеко один от другого. Струя воздуха между ними заставляет их сблизиться. На фиг. 242, в воздух по трубке АВ подается в отверстие в центре закрепленного диска С.



Фиг. 242.Демонстрационные опыты.

>а — распылитель; б — струя воздуха между двумя близко подвешенными легкими шариками; в — при подаче воздуха подвижная пластина D притягивается к пластине С.


Подвижный диск D расположен на небольшом расстоянии под диском С. Воздух, проходящий через АВ, прежде чем выйти в атмосферу, изменяет направление и течет горизонтально в узком пространстве между С и D. Подвижный диск D притягивается к С, даже если к нему подвесить груз W. Если диск D очень легок и закреплен подвижно, так что не может соскользнуть вбок, он будет вибрировать около С, издавая пронзительный визг. По этому принципу действует известная всем в детстве пищалка из натянутой травинки. Нечто общее с этим имеет и действие наших голосовых связок.

На фиг. 243 шарик удерживается струей воздуха или воды.



Фиг. 243. Струя воздуха удерживает легкий шарик.


Здесь удивителен не тот факт, что струя может подбрасывать шарик (для этого надо лишь, чтобы шарик попал в восходящий поток), а то, что шарик не сваливается вбок. Равновесие кажется неустойчивым, но это не так. Когда шарик отклоняется в одну сторону В, большая часть струи идет по другую сторону А. ВА, где скорость потока выше, давление меньше, поэтому большее давление в области В возвращает шарик в среднее положение. (Обычно шарик вращается, создавая дополнительное благоприятное изменение в распределении линий тока.)


Искривленный полет мяча («сухой лист»)

Почему вращающийся мяч движется по кривой линии? Можно показать, что здесь проявляется эффект Бернулли. Каждый мяч, каким бы гладким он ни казался, имеет в микроскопических масштабах шероховатости. Вращающийся мяч захватывает неровностями своей поверхности молекулы воздуха и заставляет их участвовать в своем движении. Таким образом, мяч окружен вращающимися слоями воздуха, ближайшие из которых движутся с той же скоростью, что и поверхность мяча, а более удаленные слои движутся медленнее и медленнее[146]. Если такой вращающийся мяч летит вперед, то линии тока складываются из двух движений: циркуляции воздуха вокруг мяча и потока, обдувающего мяч.

Вообразите наблюдателя, который для наблюдения за линиями тока летит за мячом, оставаясь все время на одном с ним уровне. Для наблюдателя мяч все время находится рядом, и оба они будут ощущать ветер, дующий навстречу. «Ветер» дует со скоростью полета мяча, но в противоположную сторону.

Можно прибегнуть к другому столь же полезному способу рассуждения. Представим себе сильный ветер, дующий навстречу со скоростью, в точности равной и противоположной скорости мяча. Тогда наблюдатель может спокойно стоять на земле и наблюдать за мячом, неподвижно висящим около него[147]. В таком ветре линии тока будут параллельными прямыми (фиг. 244, а).

Чтобы понять, почему вращающийся мяч может лететь по кривой линии, набросаем обе картины линий тока и затем сложим их на основе разумных предположений. На фиг. 244, б изображен вращающийся мяч с вращающимися вместе с ним слоями воздуха. Чтобы показать, что по мере удаления от мяча движение воздуха замедляется, внешние линии тока расположены на больших расстояниях друг от друга и помечены более короткими стрелками. Для сложения обоих движений наложим один рисунок на другой (фиг. 244, в) и в каждой точке сложим векторы скорости. Нарисуем в точке Р два небольших вектора скорости, v>1 для равномерного потока и v>2 для вращения, и построим параллелограмм, чтобы найти равнодействующую (фиг. 244, г), которая представляет собой скорость суммарного движения в этой точке. Повторите эту операцию для точек по всему рисунку, беря каждый раз одну и ту же горизонтальную скорость


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.