Физика для любознательных. Том 1. Материя. Движение. Сила - [119]
Когда вы получите достаточное количество суммарных векторов, чтобы можно было приступить к нанесению линий тока, сотрите ненужные вспомогательные построения и оставьте в каждой точке только короткие стрелки, указывающие направление суммарного потока (фиг. 244, д, е).
Фиг. 244.Линии тока вокруг движущегося в воздухе вращающегося мяча.
>а — линии тока «встречного» ветра (однородный поток воздуха, противоположный полету мяча); б — линии тока воздуха вокруг вращающегося мяча; в — суммирование обоих видов тока воздуха; г — оба вида тока воздуха накладываются один на другой и скорости складывают как векторы; д, е — маленькие стрелки показывают направление суммарной скорости в точке Р.
Длина этих стрелок не обязательно должна соответствовать величине скорости. Теперь можно сообразить, как провести непрерывные линии тока, направление которых везде совпадало бы со стрелками. Здравый смысл подсказывает следующее: 1) очень далеко от мяча вращательным движением можно пренебречь, там существует стационарный поток со скоростью v>1, в котором линии тока горизонтальны и распределены равномерно; 2) очень близко к мячу преобладает вращение и линии тока практически будут круговыми; 3) в некоторой точке N под мячом v>1 и v>2 как раз уравновесят друг друга, создавая «нейтральную точку», в которой не будет движения. Чтобы закончить рисунок, надо продолжить утомительную работу по сложению скоростей, дополняя ее с помощью воображения, или можно обмануть себя и подсмотреть реальную картину линий тока, полученную каким-либо другим способом. Такой набросок может дать лишь поверхностное представление о суммарном распределении линий тока. Чтобы получить надежную картину, надо геометрическую работу выполнить при помощи математики и в первую очередь подробно исследовать распределение скорости вращения v>2. На фиг. 245 приведена полученная более строгим методом картина распределения линий тока вокруг цилиндра, вращающегося в однородном потоке воздуха. Для мяча получается сходная картина.
Фиг. 245.Линии тока вокруг вращающегося цилиндра в однородном потоке воздуха.
>Схема выполнена довольно точно по картине линий тока, предсказываемой уравнением
Задача 5
Если вы раньше изучали физику, вы, возможно, сталкивались с подобной картиной в совершенно другом разделе физики. Если да, то где? Чисто ли случайно это сходство? Может ли оно иметь какое-либо практическое значение?
Задача 6
Задание имеет смысл только при том условии, что оно будет выполнено схематически и быстро. Применяя метод, использованный при построении фиг. 244, набросайте линии тока для потока, изображенного на фиг. 246.
Фиг. 246.Линии тока для источника и стока равной силы в бесконечном озере постоянной глубины.
В мелком озере со спокойной водой в точке А имеется постоянный приток воды, а в точке В равный ему сток. Набросайте линии тока в озере, воспользовавшись следующими указаниями. Если бы действовал только приток, то линии тока расходились бы от точки А в виде лучей. Вблизи А, где линии тока расположены тесно, скорость радиального течения будет велика; дальше от А скорость будет уменьшаться[148]. Если бы действовал только сток, то создалась бы подобная картина с радиальным течением по направлению к В. Нанесите на лист бумаги точки А и В на расстоянии нескольких сантиметров одна от другой, нарисуйте оба набора линий тока и с помощью графических построений и смекалки найдите суммарную картину. (Что в этом случае соответствует указаниям 1 и 2 на стр. 370, сделанным при обсуждении фиг. 247, г?)
Где еще вы встречались с подобной картиной?
Теперь можно вернуться к летящему бейсбольному мячу.
С точки зрения наблюдателя, летящего рядом с мячом, линии тока вокруг мяча распределены, как показано на фиг. 247. Если мяч вращается вокруг горизонтальной оси, поток воздуха над мячом имеет большую скорость, чем под ним, поэтому над мячом создается область пониженного давления, а под ним — повышенного. Таким образом, давление воздуха подталкивает мяч вверх, отклоняя его от обычного пути. Подобным же образом мяч, вращающийся вокруг вертикальной оси, отклоняется в сторону под действием силы, направленной вбок. По этому вопросу было много споров, но в конце концов «искривление» полета вращающегося бейсбольного мяча было доказано измерениями. Тем не менее, если имеется некое предвзятое мнение, основанное на репутации подающего мяч игрока, игрокам и болельщикам полет может показаться более искривленным, чем он есть на самом деле.
При быстром вращении более легкого мяча, например при «резаной» подаче в теннисе, искривление полета хорошо заметно на глаз.
Фиг. 247.Линии тока в потоке воздуха около вращающегося мяча.
>Очень малая часть пути мяча показана с точки зрения неподвижного наблюдателя.
Задача 7. Полет по искривленной траектории
Предположим, что два мяча — массивный бейсбольный мяч и значительно более легкий мяч того же размера — горизонтально брошены рядом друг с другом с одной и той же скоростью и с одинаковым вращением вокруг вертикальной оси.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.
Книга М. Ивановского «Законы движения» знакомит читателей с основными законами механики и с историей их открытия. Наряду с этим в ней рассказано о жизни и деятельности великих ученых Аристотеля, Галилея и Ньютона.Книга рассчитана на школьников среднего возраста.Ввиду скоропостижной смерти автора рукопись осталась незаконченной. Работа по подготовке ее к печати была проведена Б. И. Смагиным. При этом IV, V, VI и VII главы подверглись существенной переработке. Материал этих глав исправлен и дополнен новыми разделами.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.
В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.