Физика для любознательных. Том 1. Материя. Движение. Сила - [121]

Шрифт
Интервал

Avt)∙(v), или dAv>2t.

Следовательно,

Ft = dAv>2t,

или

F = dAv>2

получаем[151]

СИЛА = (ПЛОТНОСТЬ)∙(ПЛОЩАДЬ)∙(СКОРОСТЬ)>2

В реальных случаях воздух приобретает не всю скорость v, а некоторую долю ее и площадь А не равна точно сечению крыла, но все же справедливо соотношение

F = (ПОСТОЯННАЯ)∙(НЕКОТОРАЯ ПЛОЩАДЬ)∙(ПЛОТНОСТЬ ВОЗДУХА)∙(v>2).

Величина постоянной зависит от геометрической формы крыла, а также интервала скоростей. Фактор формы велик для необтекаемых предметов, таких, как плоская тарелка, поставленная поперек потока воздуха, или даже круглый мяч. Для «обтекаемого» тела, подставляющего ветру такую же площадь, но имеющего правильно сконструированную каплеобразную форму, этот фактор в 20—100 раз меньше, потому что такое тело создает значительно более слабое вихревое движение. Рассмотренное сопротивление, обусловленное остающимися позади вихрями, по своей природе совершенно отлично от создаваемого трением сопротивления при ламинарном течении.



Фиг. 253.Сравнительная величина факторов формы, влияющих на сопротивление воздуха в случае быстрого потока.


Механизм сопротивления, создаваемого внутренним трением

Сила сопротивления, обусловленная внутренним трением при ламинарном течении, создается не в результате появления макроскопического движения среды, а вследствие «уноса» мелких порций количества движения, происходящего при столкновении молекул. Ближайшие к движущемуся предмету молекулы жидкости при столкновении с ним приобретают часть его количества движения и при столкновении с соседними молекулами передают им свое приобретение. Такие молекулы, снующие взад и вперед в беспорядочном движении, ведут себя как мыши, «отщипывая» от медленно движущегося предмета небольшие порции количества движения. Вследствие похищения части количества движения предмет испытывает тормозящую силу

Ft = ПОТЕРЯ КОЛИЧЕСТВА ДВИЖЕНИЯ ЗА ВРЕМЯ t.

Как это сопротивление, обусловленное внутренним трением, зависит от скорости движущегося предмета? Предположим, предмет стал двигаться вдвое быстрее; тогда его количество движения возрастет вдвое. При каждом столкновении молекулы жидкости, вероятно, будут забирать ту же долю от удвоенного количества движения предмета, что и раньше[152]. Поэтому при каждом столкновении они будут уносить вдвое большее количество движения. А частота столкновения остается той же, потому что скорость движения предмета мала по сравнению со скоростями молекул. Таким образом, при удвоенной скорости предмет за то же время теряет удвоенное количество движения. Следовательно, он должен испытывать удвоенное сопротивление, поэтому следует ожидать, что сопротивление будет пропорционально скорости предмета, F ~ v. Опыт подтверждает это для медленного ламинарного течения газа или жидкости.

С другой стороны, при высоких скоростях организованные «банды молекул» вихревого слоя жидкости производят «грабеж» количества движения. В этом случае, как указывалось выше, сопротивление пропорционально v>2.

Таким образом, при очень медленном движении сопротивление ламинарного потока пропорционально v (например, при движении мелких капель дождя в облаке или при оседании осадка в пруду), а при быстром движении сопротивление вихревого трения пропорционально v>2.

Современные воздушные лайнеры летят так быстро, что даже при наличии обтекаемой конструкции возникает сопротивление, пропорциональное v>2. При рассмотрении реального полета надо помнить, что способы управления при различных скоростях различны, и поэтому изменяется фактор формы. Вследствие этого зависимость сопротивления от скорости оказывается еще более сложной, и существует некоторая оптимальная скорость, при которой сила сопротивления минимальна.


Задача 8. Предельная скорость

(Эта задача подготавливает к важному опыту по атомной физике.) Небольшое обтекаемое тело падает в воздухе. Сначала оно движется ускоренно, но затем устанавливается постоянная скорость падения (которую называют предельной скоростью). Проверьте это утверждение с помощью небольшого листка бумаги или игрушечного парашюта.

а) Почему падающее тело не продолжает ускоряться?

б) Когда тело движется с постоянной скоростью, чему равна действующая на него суммарная сила? Что можно сказать о величине силы сопротивления, действующей на тело?

в) Можно ли определить только из наблюдения за падающим телом, обусловлена ли тормозящая сила внутренним трением (F ~ v) или вихревым сопротивлением (F ~ v>2)?

г) Предположим, что в результате случайного столкновения с комаром падение предмета несколько замедлилось или несколько ускорилось. Объясните, почему предмет вернется к первоначальной скорости, если сила сопротивления с ростом скорости возрастает (как это происходит в любом из случаев F ~ v или F ~ v>2).

д) Предположим, что падающее тело полое; заполняя его, можно увеличить его массу в 4 раза. Как это изменение отразится на его предельной скорости v, 1) если F ~ v? 2) если F ~ v>2?


ОПЫТЫ ДЛЯ КАЖДОГО СТУДЕНТА

Опыт 9. Небольшой лист бумаги возьмите обеими руками за один конец так, чтобы этот конец был горизонтален, а другой изгибался под действием собственного веса. Равномерно дуйте над поверхностью горизонтальной части бумаги (фиг. 254).


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.