Физика для любознательных. Том 1. Материя. Движение. Сила - [116]

Шрифт
Интервал



Фиг. 232.Идеальная (не имеющая вязкости) жидкость течет вдоль линии тока.

>Скорость всех частей жидкости одинакова.


В реальной жидкости течение быстрее всего в центре, на оси трубки, в соседних слоях оно медленнее, а по мере удаления от центра еще более замедляется; на стенках трубки жидкость остается в покое. Распределение скоростей при ламинарном течении показано на фиг.233. (При более быстром течении с пограничным слоем на стенках поток также имеет наибольшую скорость в центре, но скорость по сечению трубки почти одинакова и резко падает только в пограничном слое.) Исследуйте зависимость между давлением и скоростью в трубке с водой.




Фиг. 233.Ламинарное течение.

>а — ламинарное течение реальной жидкости в трубке. Стрелки показывают скорость течения в различных участках; б — жидкость, медленно текущую в трубке, «метят» с помощью мгновенно нанесенной поперек потока полоски красителя. Передвижение краски показывает скорости на различных участках.


ДЕМОНСТРАЦИОННЫЕ ОПЫТЫ

Опыт 5. Течение воды по узким трубкам (фиг. 234). Вода, текущая по трубкам, всегда испытывает некоторое сопротивление, обусловленное внутренним трением жидкости.



Фиг. 234.Медленное течение воды через узкую однородную трубку.

>а — при удвоении давления скорость течения удваивается. Измерительные трубки, присоединенные к боковым отверстиям, показывают давление текущей воды на стенки трубки;

>б — для измерения давления годится любое устройство (сверху вниз): вертикальная трубка; U-образные трубки со ртутью; внизу показан манометр, содержащий упругую металлическую трубку, соединенную со стрелкой (манометр Бурдона);

>в — если такое же давление приложить к трубке удвоенного диаметра, скорость течения увеличится в 16 раз.


Чтобы вязкость не помешала нашему исследованию парадоксов, рассмотрим сначала ее влияние. Мы используем это рассмотрение впоследствии для иллюстрации движения электрического тока (гл. 32[143]), а перед этим дадим молекулярное объяснение внутреннего трения газов (гл. 30[144]).

В опыте, показанном на фиг. 234, применена очень узкая трубка, капилляр, по которой под действием разности давлений на концах трубки медленно (ламинарно) течет жидкость. Устройства для измерения давления обнаруживают постепенный спад давления вдоль трубки.

Хотя жидкость движется под действием перепада давлений, она не ускоряется (скорость потока вдоль трубки одинакова), поэтому должны существовать иные силы, чтобы суммарная сила, действующая на любую часть жидкости, была равна нулю.

Эти силы создаются внутренним трением жидкости. Стенки трубки вследствие внутреннего трения тормозят движение ближайшего к ним слоя жидкости, и это торможение передается от одного слоя к другому по всему потоку жидкости от стенок трубки до ее оси, где течение происходит быстрее всего.


Чтобы увеличить скорость установившегося потока в трубке, надо изменить давление. Для поддержания более быстрого течения потребуется большее давление. Действительно, опыт показывает, что для данной трубки скорость течения прямо пропорциональна разности давлений между концами трубки (до тех пор, пока при быстром течении не появится турбулентность). Это общий закон, обусловленный влиянием внутреннего трения на ламинарный поток жидкости:

v ~ (р>1р>2).

При переходе к более широкой трубке распределение линий тока и внутреннее трение в жидкости сохраняются, но роль трения становится менее заметна. В этом случае медленный слой жидкости около стенок трубки составляет меньшую долю от общей массы движущейся жидкости. Поэтому для получения той же скорости на осевой линии тока требуется значительно меньшая разность давлений. А при той же разности давлений в более широкой трубке возникает более быстрое течение. Опыт дает следующие соотношения для медленного ламинарного потока, движущегося по различным длинным трубкам под действием разности давлений на их концах:

СКОРОСТЬ, усредненная по всем линиям тока ~ РАЗНОСТЬ ДАВЛЕНИЙ МЕЖДУ КОНЦАМИ ТРУБКИ / ДЛИНА ТРУБКИ,

СКОРОСТЬ, усредненная по всем линиям тока в трубке ~ (ДИАМЕТР ТРУБКИ)>2.

Умножение средней скорости на площадь поперечного сечения трубки даст объем жидкости, протекающий через любое сечение в единицу времени, потому что

СКОРОСТЬ = ДЛИНА, ПРОЙДЕННАЯ В ЕДИНИЦУ ВРЕМЕНИ

и

СКОРОСТЬ∙ПЛОЩАДЬ = (ДЛИНА∙ПЛОЩАДЬ)/ВРЕМЯ = ОБЪЕМ/ВРЕМЯ

Таким образом, для медленного ламинарного потока в трубках

ОБЪЕМ, протекающий в секунду ~ РАЗНОСТЬ ДАВЛЕНИЙ МЕЖДУ КОНЦАМИ ТРУБКИ/ДЛИНА ТРУБКИ,

и

ОБЪЕМ, протекающий в секунду ~ (ДИАМЕТР ТРУБКИ)>4.

Обратите внимание на сильное влияние диаметра трубки.

Подумайте о различии между течением крови в тонких сосудах и в артериях. В очень тонких капиллярах кровяные тельца могут фактически закупорить проток, уменьшая течение даже еще больше, чем предсказывает написанная выше простая формула.


Задача 1

С помощью диаграммы фиг. 234 можно дать простое графическое изображение отношения (разность давлений):(длина). Можете ли вы предложить термин для обозначения этого отношения?


Задача 2

Примем течение нефти в трубопроводе за ламинарный поток и предположим, что к нему применимы приведенные выше соотношения. Как должно влиять удвоение диаметра трубы:


Еще от автора Эрик Роджерс
Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.