Евклидово окно - [51]
По результатам этого эксперимента Максвелл сдал в журнал «Труды Королевского общества» статью под названием «Эксперимент с целью определить, влияет ли движение Земли на преломление света». К сожалению, ее так никогда и не опубликовали: ее редактор, Дж. Г. Стокс (Стоукс), убедил Максвелла в несостоятельности его подхода. На самом деле, состоятельным он был — по крайней мере в принципе. Максвелл не дожил до решения вопроса об эфире, но в 1879 году, мучаясь адской желудочной болью от рака, что вскоре отнимет у него жизнь, он отправил одному своему другу письмо на заданную тему. Это письмо в конце концов приведет к экспериментальному доказательству того, что эфира не существует.
Письмо Максвелла издали посмертно в журнале «Нэйчер», где его заметил Майкельсон. Оно и подтолкнуло его к эксперименту. Чтобы разобраться в замысле Майкельсона, вообразим, что Николай, Алексей и их отец играют в мяч в парке. Втроем они формируют прямоугольный треугольник с отцом в вершине прямого угла, Николаем в северной вершине и Алексеем — в западной, на равных расстояниях от отца, вдоль вертикальной и горизонтальной осей.
Теперь представим, что все трое бегут на север с одинаковой скоростью. Положим, расстояние от отца до каждого сына составляет 10 ярдов, и они втроем бегут со скоростью 10 миль в час. Отец гонится за Николаем, убежавшим с мячом, а Алексей старается не отставать от отца по параллельной дорожке. Отец смотрит на часы и кричит: «Пора домой!» Услышав его, дети вопят в ответ: «Нет!» Внимание, вопрос: услышит ли отец ответ одного из сыновей раньше, а другого — позже?
Ответ — «да». Не имеет значения, насколько шустро бежит любой говорящий, их крики летят по неподвижному воздуху с одной и той же скоростью, назовем ее с . Но Николай убегает от крика отца, а значит, звуку, чтобы добраться до Николая, придется пролететь большее расстояние, чем те 10 ярдов, которые разделяют бегущих, — на то расстояние, которое Николай пробежит за время, необходимое звуку, чтобы до него долететь, помимо заданных 10 ярдов. Ответному же крику Николая не придется пролететь и тех 10 ярдов, что отделяют его от отца, потому что отец бежит навстречу звуку, а значит, путь звука составит 10 ярдов минус расстояние, которое отец успеет пробежать за то время, необходимое звуку, чтобы добраться до отца. Иными словами, крик отца долетает до Николая со скоростью с — 10 миль/час, а крик Николая достигнет отца со скоростью с + 10 миль/час. Алексей, с другой стороны, не обгоняет отца и не отстает от него, стало быть, их крики достигают своих целей со скоростью, просто равной с .
>Разговор на бегу
С учетом этих объяснений вроде очевидно, что путь туда и путь обратно занимает разное время, но как же все-таки быстрее: с постоянной скоростью с в обоих направлениях или сначала помедленнее (с — 10), а потом побыстрее (с + 10)?
Алексей и Николай знают ответ из сказки, которую им иногда читают на ночь (покуда они старательно не желают спать). Мораль этой сказки такова: тише едешь — дальше будешь. Чтобы в этом убедиться, предположим ненадолго, что скорость звука с равна 10,00001 (это в переводе с десятичной записи на обычный язык означает «10 и еще чуточку») миль/час. В таком случае вопли Алексея и его отца летят со скоростью 10,00001 миль/час, т. е. по 2 секунды в каждом из двух направлений. Николаев ответный клич полетит к отцу гораздо прытче, т. е. со скоростью с + 10 = 20,00001 миль/час, и достигнет слуха отца где-то через 1 секунду. Но сначала надо, чтобы зов отца услышал Николай. Сколько времени это займет? Скорость движения этого звука — всего лишь с — 10 = = 10,00001 — 10 = 0,00001 миль/час. С такой скоростью отец докричится до сына через три недели. Алексей выиграл. Разумеется, скорость звука на самом деле примерно 675 миль/час, или около 300 ярдов в секунду. И хоть это практически фотофиниш, результат этих догонялок все равно тот же.
Если заменить звук светом, а воздух — эфиром, предыдущий эксперимент превратится точь-в-точь в описание максвеллова замысла. Папе с сыновьями не придется бегать взапуски: Земля и так несется свозь пространство, вращаясь вокруг Солнца со скоростью примерно 18,5 миль в секунду. (Земля и вокруг своей оси вращается, но с гораздо меньшей скоростью.) Есть одна тонкость: вращение Земли вокруг Солнца с заданной скоростью не означает, что Земля с этой скоростью движется сквозь эфир. Тем не менее, вроде бы предполагается, что Земля движется сквозь эфир с некоторой скоростью, и она должна, по идее, меняться с временами года, т. е. с изменением направления движения Земли в пространстве по орбите. В самом деле, наш эксперимент с отцом и мальчишками должен позволить нам измерить скорость движения Земли в эфире: мы же знаем, с каким отрывом выигрывает Алексей, и это знание даст нам решение для скорости с . Примерно такой опыт Майкельсон и поставил — простой эксперимент, лабораторией которому послужил весь мир.
Свет движется споро — даже по сравнению со скоростью движения Земли по орбите: примерно в 10 000 раз быстрее. Для теории очень удобная круглая цифра, однако для эксперимента — ужас кромешный. Математика в этом случае говорит нам, что при такой скорости разница во времени обменов между Алексеем и Николаем и их отцом составит всего одну миллионную процента. Это означает, что, если отец, Алексей и Николай находятся на расстоянии одного светового года друг от друга, сигналы от мальчишек долетят за треть секунды. Применим ли практически предложенный метод? Вроде бы нет.
Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.
Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.
Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.
Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.
Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.
Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.