Евклидово окно - [50]

Шрифт
Интервал

* * *

Все началось в 1865 году, когда шотландский физик пяти футов и четырех дюймов ростом опубликовал статью «Динамическая теория электромагнитного поля». Затем, в 1873 году, продолжил тот же разговор в «Трактате об электричестве и магнетизме». При рождении автор получил имя Джеймс Клерк[208], но, чтобы претендовать на наследство умершего дяди, отец автора добавил к фамилии «Максвелл». Как выяснилось, ценой небольших денег и благодаря необычным обстоятельствам, дядя увековечил свое имя — хотя бы среди физиков и историков науки.

Электромагнитная теория Максвелла считается краеугольным камнем современных механики, теории относительности и квантовой теории. Его серьезным бородатым лицом не украшают кофейные кружки. Ни нью-йоркские, ни голливудские стервятники от культуры не находят его образ притягательным. И тем не менее жизнь Максвелла знаменита среди тех, кто в старших классах или в колледже пытался постичь разнообразие и сложность явлений электричества, магнетизма и света, а затем, изучив векторное счисление, внезапно обнаруживал, что все эти премудрости содержатся в нескольких незатейливых строках, подобных тем, что Алексей назвал бы «численными фразами». Рядом с университетским городком Калтеха один пасадинский магазин как-то имел в продаже футболку, на которой значилась цитата-парафраз из передовицы Господа Бога — Книги Бытия: «И сказал Господь: “Да будет[209]”. И стал свет». Эти четыре уравнения — максвелловы[210]. Если не считать уравнения закона всемирного тяготения, эта горсть буковок и диковинных символов описывала все силы, известные науке.

Радио, телевидение, радары и спутники связи — всего лишь следствие этого знания. Квантовая версия максвелловой теории — самая продуманная и дотошно выверенная квантовая теория поля из существующих; она стала моделью нынешней Стандартной модели элементарных частиц, мельчайших известных нам единиц материи. Пристальный анализ теории Максвелла предполагает и специальную теорию относительности, и отсутствие какого бы то ни было эфира. Но все это в его время было совсем не очевидно.

Ныне теорию Максвелла студентам-физикам представляют в виде лапидарного набора дифференциальных уравнений, определяющих две векторные функции, из которых, в принципе, можно вывести все оптические и электромагнитные явления в вакууме. Изящнейшая теоретическая конструкция. Но, изучая ее по текстам, понимаешь, что вся эта красота имеет столько же общего с процессом ее открытия, сколько занятия по Ламазу[211] и деторождение: адская боль и вопли придают второму переживанию несколько иной оттенок. Давным-давно один студент (я) сдал домашнюю работу, в которой решил сложную задачку про электромагнитное излучение двумя способами — чтобы прочувствовать волшебство более мощного метода. Элегантное решение — с применением современных тензоров — заняло менее страницы. Подход с позиций «грубой силы» для достижения того же результата потребовал восемнадцать страниц математики. (Преподаватель вычел у студента баллы за то, что тот вынудил его во всем этом копаться.) Последняя методика была ближе к исходным максвелловым теоретическим выкладкам — и все равно не настолько громоздкая. Теория Максвелла 1865 года содержала набор из двадцати дифференциальных уравнений с двадцатью неизвестными.

Вряд ли стоит упрекать Максвелла за то, что он не применил упрощенную форму записи: ее не просто не применяли широко — ее тогда еще не изобрели. С другой стороны, теория Максвелла не только была или выглядела сложной, она еще и объяснялась плоховато. Судя по всему, та же присущая Максвеллу дотошность, что позволила ему впитать и объединить обширное знание того времени, а затем умозрительно слепить из него настолько сложную теорию, повредила способности ученого растолковать ее. Хендрик Антон Лоренц, более прочих вложившийся в объяснение и упрощение максвелловой теории, писал позднее: «Постигать соображения Максвелла не всегда просто. В его книге ощущается недостаток единства, поскольку он достоверно описывает постепенный переход от старых идей к новым»[212]. Куда менее доброжелательны слова Пауля Эренфеста — он называл наработки Максвелла «своего рода интеллектуальными джунглями»[213]. Максвелл предоставил коллегам необработанную выгрузку своей оперативной памяти, а не педагогическое пособие. Однако невзирая на бестолковость презентации своей теории, Максвелл оказался величайшим знатоком электромагнитных явлений, каких тогда видывал мир. И что же он думал о материи пространства — с учетом всех его прозрений? Эфир или не эфир? В 1878 году он опубликовал статью на эту тему в девятом издании Британской энциклопедии:

Какие бы трудности ни возникали у нас при создании непротиворечивых представлений о составе эфира, сомнений быть не может: межпланетарные и межзвездные пространства не пусты, но заполнены некой материальной субстанцией или телом, которое, определенно, наибольшее и, вероятно, самое однородное из всех, что нам известны[214].

Даже великий Максвелл не смог расстаться с этой идеей.

Стоит все-таки отдать ему должное: он не просто отмахнулся от эфира, как многие другие, и отверг его как ненаблюдаемую необходимость. Он открыл первое и главное наблюдаемое следствие: если свет движется с постоянной скоростью относительно эфира, а Земля — по эллиптической орбите сквозь эфир, то скорость, с которой свет, испускаемый пространством, приближается к Земле, будет не одной и той же в зависимости от того, в какой точке орбиты Земля находится. Земля, вообще говоря, в январе и в июне, т. е. находясь в противоположных точках орбиты, движется в разных направлениях. 23 апреля 1864 года Максвелл попытался экспериментально определить, с какой скоростью Земля движется сквозь эфир.


Еще от автора Леонард Млодинов
Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Высший замысел

Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.


Великий замысел

Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.


(Нео)сознанное. Как бессознательный ум управляет нашим поведением

Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.


Эластичность. Гибкое мышление в эпоху перемен

Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.


Стивен Хокинг. О дружбе и физике

Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.


Рекомендуем почитать
Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.