Евклидово окно - [49]

Шрифт
Интервал

.

Гано далее придает эфиру фундаментальную роль в большинстве явлений, изученных в его время: «…движение особого рода, произведенное с эфиром, может порождать феномен тепла; движение того же рода, но с большей частотой, порождает свет; быть может, движение другого вида или свойства есть причина электричества».

Современные представления об эфире были предложены Кристианом Гюйгенсом[201] в 1678 году[202]. Само понятие назвал так Аристотель[203] — это был его пятый элемент, материя, из которой состоят небеса. Согласно Гюйгенсу, господь сотворил пространство на манер громадного аквариума, нашу планету — как плавучую игрушку, какую бросают рыбкам на потеху. Разница лишь в том, что, в отличие от воды, эфир протекает не только вокруг, но сквозь нас. Это представление приходилось по сердцу всем, кому — как и Аристотелю — не нравилась мысль о «ничто» — или вакууме — в пространстве. Гюйгенс приспособил эфир Аристотеля в попытке объяснить открытие датского астронома Олафа Рёмера, обнаружившего, что свет от одной из лун Юпитера добирается до Земли не мгновенно, а какое-то время спустя. Этот факт — а также другой: свет, похоже, движется со скоростью, не зависящей от его источника, — указывали на то, что свет состоит из волн, перемещающихся в пространстве подобно звуку, распространяющемуся по воздуху. Однако звуковые волны, как и волны на воде или скакалке, считались упорядоченным движением среды — воздуха, воды или веревки. Если пространство пусто, по тогдашним представлениям, волна в нем распространяться не может. Пуанкаре в 1900 году писал: «Известно, откуда произрастает наша вера в эфир. Когда свет движется к нам от далекой звезды… он уже не в звезде, но пока и не на Земле. Неизбежно где-то он обретает, скажем так, материальную поддержку»[204].

Как и большинство новых теорий, гюйгенсов эфир имел свои «хорошие, плохие и гадкие»[205] стороны. Плохим и гадким в теории Гюйгенса оказалось малюсенькое допущение, что целая Вселенная и все, что в ней находится, пронизано этим предельно разреженным и, следовательно, не доступным к наблюдению веществом. Гюйгенсу много чего пришлось замести под ковер: одно дело — постулировать всеприсутствующую во Вселенной жидкость, и совсем другое — примирить ее существование с известными законами физики. Теорию Гюйгенса не приняли при его жизни — предпочли воззрения Ньютона на свет как на поток частиц.

В 1801 году был поставлен эксперимент, изменивший устоявшиеся взгляды. К тому же, благодаря ему возник важный новый инструмент XIX века для изучения света. Экспериментальная установка выглядела невинно — всего лишь вариация опытов, проводившихся из века в век: пропускание света через щель. Однако английский физик Томас Юнг (Янг) пропустил два луча света от одного источника через две отдельные щели и посмотрел, как эти лучи перекрываются на экране. Он обнаружил некий узор — чередование света и тени, т. е. интерференционную картину. Интерференция в терминах волн объясняется просто. Перекрывающиеся волны в некоторых участках суммируются, а в некоторых — гасят друг друга, подобно гребешкам и ложбинам, наблюдаемым при пересечении кругов на воде. Волновая теория света вернула к жизни теорию эфира.

Возражения к теории Гюйгенса за прошедшие века никуда не делись. Напротив — разгорелась битва нетерпимостей. В одном углу ринга был свет как волновое движение безо всякой среды. Он смахивал на волну на воде в отсутствие воды, и болельщиков у него оказалось немного. В другом углу — свет как волна в среде, которая есть везде, но ее нигде нельзя засечь. Эдакая вода, которая вроде бы всюду, но ее нигде не видно, и этому участнику тоже затруднительно симпатизировать. Быть (но без всякого видимого эффекта) иль не быть? Вот в чем состоял вопрос. Обывателю подобные различения — шило и мыло. Ученым того времени оказался однозначно мил эфир. Всяко лучше, чем «не быть». Незнание физиков, из чего этот эфир состоит, виделось им «несущественным», как писал Э. Г. Фишер[206] в своей книге «Начала натурфилософии» (1827).

Но одному физику — французу Огюстену-Жану Френелю — природа эфира не казалась несущественной. В 1821 году он издал математический трактат о свете. Колебания волн могут быть двух принципиально разных видов: либо вдоль направления движения — как звуковые, например, или как у игрушки Слинки, или под прямым углом к нему, как волны по веревке. Френель показал[207], что световые волны скорее всего — второго рода. Но такие волны требуют от среды особой эластичности — грубо говоря, определенной плотности. А значит, решил Френель, эфир не есть газ или жидкость, пронизывающие Вселенную, а твердое вещество. То, что раньше было плохим и гадким, превратилось в почти невообразимое, но, тем не менее, до конца столетия осталось общепринятым.

Глава 23. Материя пространства

Попытки разобраться, из чего же сделано пространство, привели, быть может, к величайшим научным прорывам в истории. Шла ожесточенная борьба между учеными, которые, по большому счету не знали, куда устремляются или куда попали, когда добрались. Как и само пространство, тропы их петляли и изгибались.


Еще от автора Леонард Млодинов
Кратчайшая история времени

Природе пространства и времени, происхождению Вселенной посвящена эта научно-популярная книга знаменитого английского астрофизика Стивена Хокинга, написанная в соавторстве с популяризатором науки Леонардом Млодиновым. Это новая версия всемирно известной «Краткой истории времени», пополненная последними данными космологии, попытка еще проще и понятнее изложить самые сложные теории.


Высший замысел

Соавторство Стивена Хокинга и Леонарда Млодинова, специалиста по квантовой теории и теории хаоса, являет собой успешный творческий тандем, что уже подтвердило их совместное произведение «Кратчайшая история времени», которое имело небывалый успех.«Высший замысел» — новая захватывающая работа этих удивительных авторов.Цель этой книги — дать ответы на волнующие нас вопросы существования Вселенной, ответы, основанные на последних научных открытиях и теоретических разработках. Они приводят нас к уникальной теории, описывающей огромную, изумительно разнообразную Вселенную, — к теории, которая позволит нам разгадать Высший замысел.


Великий замысел

Все мы существуем лишь непродолжительный период времени и на его протяжении способны исследовать лишь небольшую часть мироздания. Но люди — существа любопытные. Мы задаемся вопросами, мы ищем на них ответы. Живя в этом огромном мире, который бывает то добрым, то жестоким, и вглядываясь в бесконечное небо, люди постоянно задаются множеством вопросов: Как мы можем понять мир, в котором оказались? Как ведёт себя Вселенная? Какова природа реальности? Откуда всё это возникло? Нуждалась ли Вселенная в создателе? Многие из нас не тратят много времени на эти вопросы, но почти все из нас когда-либо об этом задумывались.Один из самых известных ученых нашего времени — Стивен Хокинг написал книгу, продолжающую тему, начатую в его предыдущих книгах.


(Нео)сознанное. Как бессознательный ум управляет нашим поведением

Все наши суждения — от политических предпочтений до оценки качества бытовых услуг — отражают работу нашего ума на двух ярусах: сознательном и неосознанном, скрытом от нашего внимания. Неповторимый стиль Леонарда Млодинова — живой, ясный язык, юмор и способность объяснять сухие научные факты так, чтобы они были понятны самой широкой аудитории — позволяет нам понять, как неосознанное влияет на нашу жизнь, по-новому взглянуть на отношения с друзьями, супругами, пересмотреть представления о себе самих и о мире вокруг.vk.com/psyfb2.


Эластичность. Гибкое мышление в эпоху перемен

Леонард Млодинов – американский физик и ученый, специалист по квантовой теории и теории хаоса, автор десятка книг, а также успешный популяризатор науки, легко и доходчиво объясняющий сухие научные факты. Существует два основных способа мышления: аналитическое, в котором преобладает логика, и эластичное, которое формирует новые идеи и неожиданные решения задач. Именно эластичное мышление позволяет человеку успешно приспосабливаться к безумному ритму жизни. Из книги вы узнаете: почему полезно выходить из зоны комфорта; как справляться с огромным количеством информации и не сойти с ума; как мозг создает смыслы и учится адаптации; как Мэри Шелли, Дэвид Боуи и Альберт Эйнштейн использовали эластичное мышление; почему игра Pokemon Go обрела небывалую популярность.


Стивен Хокинг. О дружбе и физике

Стивен Хокинг был одним из наиболее влиятельных физиков современности, и его жизнь затронула и отчасти поменяла жизни миллионов людей. Леонард Млодинов обращается к тем двум десятилетиям, в которые он был коллегой и другом ученого, чтобы нарисовать его портрет – уникальный и очень личный. Он знакомит с Хокингомгением, ломающим голову над загадками Вселенной и всего мироздания и в конце концов формулирующим смелую теорию об излучении черных дыр, которая заставила космологов и физиков посмотреть на проблему происхождения космоса с абсолютно нового угла.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.