Эта странная математика. На краю бесконечности и за ним - [75]
Семь мостов Кёнигсберга через реку Преголя.
Эйлер также открыл ставшую знаменитой формулу многогранников (трехмерных тел с плоскими многоугольными гранями): В – Р + Г = 2, где В, Р и Г – число вершин, ребер и граней соответственно. И опять-таки она имеет прямое отношение к топологии – ведь она оперирует свойствами геометрических тел, не зависящими от количественных измерений.
Еще одним пионером в области топологии стал Август Мёбиус, изучивший свойства перекрученной на пол-оборота и свернутой в кольцо ленты, которая сегодня носит его имя – несмотря на то, что его соотечественник Иоганн Листинг опубликовал результаты собственных исследований ее свойств на несколько лет раньше, в 1861 году. Если полоску бумаги перекрутить на 180 градусов, а затем склеить концы вместе, получится кольцо с односторонней поверхностью – это легко проверить, ведя карандашом посередине полосы линию, пока та не вернется в исходную точку. Пол-оборота, соединение краев – и бумажная полоска превращается в ленту Мёбиуса, объект, который в глазах тополога коренным образом отличается от простого кольца или открытого с двух сторон цилиндра[53]. Любой разрыв в геометрическом теле или соединение вместе его концов превращает его в топологически новое тело. Отсюда следует еще одна особенность топологии: она хорошо подходит для описания внезапных скачкообразных изменений состояния системы – как обнаружили лауреаты Нобелевской премии по физике 2016 года.
Лента Мёбиуса: объект, который, будучи вложенным в трехмерное пространство, имеет только одну “сторону”.
В обычной геометрии все фигуры считаются жесткими и невзаимозаменяемыми. Квадрат – всегда квадрат, треугольник – всегда треугольник, и первый никогда не может превратиться во второй. Прямые линии обязаны оставаться идеально прямыми, а кривые – кривыми. В топологии же объекты вправе терять свою структурную жесткость и становиться эластичными, оставаясь при этом самими собой по сути, – при условии, что в них не делается разрезов и склеек. Квадрат, например, можно растяжением и сжатием превратить в треугольник, но с точки зрения топологии он останется самим собой: про такие фигуры говорят, что они гомеоморфны. Точно так же обе эти фигуры идентичны кругу (то есть “заполненной” окружности). Если говорить о трех измерениях, то куб гомеоморфен шару (“заполненной” сфере). Иными словами, поверхность куба топологически идентична поверхности сферы. А вот тор, или бублик, от сферы принципиально отличается: как бы вы их ни сжимали и ни растягивали, одинаковых фигур из них не получить.
Количество отверстий в объекте называется родом его поверхности. Сфера и куб имеют род 0, обычный тор – род 1, крендель (то есть двойной тор, с двумя отверстиями) – род 2 и так далее. Трехмерная топология может учитывать и более сложные факторы, скажем, структуру окружающего пространства, благодаря чему формируются узлы. Чтобы избежать путаницы, стоит сразу оговориться, что в теории узлов большинство известных нам узлов таковыми не считаются. Математический узел отличается от привычного нам узла на веревке или на шнурках ботинок тем, что его концы соединены вместе, так что развязать его невозможно.
Истинный узел удобно представить себе в виде окружности или любой другой замкнутой петли, обитающей в трехмерном евклидовом пространстве. Распутать его не поможет никакое растягивание и перекручивание. Единственный способ создать истинный (математический) узел из куска бечевки – это соединить его концы вместе, например склеить. Простейший узел, который можно получить с помощью этого метода, – тривиальный (или незаузленный) узел, то есть обычная петля. А вот дальше все становится сложнее.
Самый простой нетривиальный узел – это трилистник. Если вы попросите кого-то завязать кусок веревки узлом, а потом соедините свободные концы, чаще всего получится именно такой. Более сложные узлы – восьмерка и те, что состоят из нескольких простых: например, прямой (известный также как рифовый) или бабий узел. И прямой, и бабий узлы состоят из двух трилистников.
Узлами с точки зрения математики первым заинтересовался Карл Гаусс в 1830-х годах. Он придумал способ вычислить коэффициент зацепления – число, показывающее, сколько раз две замкнутые кривые в трехмерном пространстве обвивают друг друга. Зацепления, как и узлы, занимают в топологии центральное место. Математические узлы и зацепления встречаются и в природе, например, в электромагнетизме и квантовой механике, а также в биохимии.
Точно так же как есть тривиальный узел, существует и тривиальное зацепление: две отдельных, никак не соединенных друг с другом окружности. Узлы – это тоже зацепления, но простые, состоящие из одной окружности; а можно создать и более сложные, если взять не одну окружность, а больше. Зацепление Хопфа, состоящее из двух однократно зацепленных окружностей, названо в честь немецкого тополога Хайнца Хопфа, хотя Гаусс изучал его на целое столетие раньше, а в изобразительном искусстве и символике оно встречалось и задолго до того. Основанная в XVI веке японская буддийская секта Бузан-ха использовала его в своем гербе. Любопытнее кольца Борромео, состоящие из трех окружностей. Необычно (и на первый взгляд кажется невозможным) в них то, что, хотя ни одно из колец не сцеплено ни с одним другим, все вместе они сцеплены: если удалить любое из трех, оставшиеся два легко разъединяются. Название колец происходит от фамилии знатной итальянской семьи Борромео, использовавшей их в своем гербе, однако сам символ уходит корнями в глубокую древность. На артефактах викингов он имеет вид трех сцепленных треугольников, известных как валькнут (что означает “узел павших”) или треугольник Одина. Тот же узор встречается и в различных религиозных контекстах, в том числе в убранстве старинных христианских храмов, где он символизирует Святую Троицу.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.
В “Книге Бытия” Гвидо Тонелли, известный итальянский физик, стоявший у истоков открытия знаменитого бозона Хиггса, описывает историю происхождения Вселенной и эволюцию жизни на Земле с точки зрения фундаментальной физики. Эта книга – одна из наиболее емких, внятных и убедительных попыток ответить на вечный вопрос человечества: “Что же на самом деле произошло в те первые мгновения?” Уместив 13,8 миллиарда лет в библейские “семь дней сотворения мира”, Тонелли увлекает читателя в стремительное путешествие по истории космоса – от Большого взрыва и рождения Вселенной до появления на Земле жизни, человеческого языка и способности человека видеть, понимать и описывать мир вокруг себя.
В этой книге увлекательно и доступно от первого лица рассказывается история потрясающего научного открытия. Физик-теоретик Пол Стейнхардт, профессор Принстонского университета, автор важных космологических теорий о ранней Вселенной, в чью честь Международная минералогическая ассоциация в 2014 году назвала новый минерал “стейнхардтитом”, описывает, как была найдена новая форма вещества – квазикристаллы, с конфигурацией атомов, запрещенной законами классической кристаллографии. Это захватывающая история о зарождении нового научного направления, о “невозможности”, которая оказалась возможной, о подлинной страсти и отчаянной храбрости в науке. В формате PDF A4 сохранен издательский макет.
Ричард Рэнгем, приматолог и антрополог, специалист в области эволюции приматов, профессор Гарвардского университета, подробно и доступно разбирает научную дискуссию по важнейшим вопросам: почему людям, представителям единого биологического вида, свойственны одновременно и удивительная доброта, и немыслимая жестокость; как эти качества, порой выходящие далеко за пределы здравого смысла, появились и закрепились в ходе эволюционной истории человечества; откуда у нас нравственные чувства, понятия о добре и зле; и главное – обречены ли мы своим эволюционным парадоксом на вечную угрозу насилия. В формате PDF A4 сохранен издательский макет книги.