Эпигенетика - [49]

Шрифт
Интервал


Хотя первоначальные исследования указывали на полуконсервативный процесс, в ходе которого откладывается новый тетрамер H3/Н4, вслед за чем инкорпорируются два новых димера Н2А/Н2В, данные последнего времени подвергли эту гипотезу сомнению. В этой недавней модели «новые» полипептиды H3 и Н4, которые уже могут нести несколько посттрансляционных модифкаций, включаются как вновь синтезированные гистоновые димеры H3/Н4 вместе со «старыми» димерами H3/Н4, расходящимися между материнской и дочерней ДНК. Если это так. тогда эти модифицированные, родительские димеры H3/Н4 также присутствуют теперь вместе с вновь синтезированными димерами на одной и той же ДНК. Их совместное присутствие могло бы тогда диктовать, какие «правильные» модификации должны размещаться на вновь добавленных димерах (Tagami et al., 2004). Эта модель выглядит привлекательной и может помочь объяснить наследование гистоновых модификаций и, таким образом, воспроизведение эпигенетической информации в ходе репликации ДНК и при клеточном делении. Однако необходимы новые данные в поддержку этой или других моделей, предназначенных для объяснения передачи хроматиновых меток в ходе клеточного деления.

Заканчивая эту главу, мы задаем вопрос: отличается ли эпигенетический контроль сколько-нибудь фундаментальным образом от основных генетических принципов? Хотя мы можем захотеть рассматривать «эпигенетический ландшафт» Уодцингтона как разграниченные участки активирующих и репрессивных гистоновых модификаций на континууме хроматинового полимера, этот взгляд легко может оказаться чрезмерной детализацией. Ведь только в последние годы мы узнали об основных ферментных системах, посредством которых могли воспроизводиться модификации гистонов. Это оформило наши современные представления о стабильности и, отсюда, наследовании некоторых гистоновых меток. Кроме того, это подчеркивается недавними исследованиями, которые показывают, что мутации по активностям, модифицирующим хроматин, таким как ремоделеры нуклеосом (Cho et al., 2004; Mohrmann and Verrijzer, 2005), DNMTs (Robertson, 2005), HDACs или HMKTs (Schneider et al., 2002), поскольку они часто обнаруживаются при ненормальном развитии и неоплазиях, являются красноречивыми примерами конечного могущества генетического контроля. Как таковое, возникновение опухоли у этих мутантных мышей обычно рассматривается как генетическое заболевание. В противоположность этому изменения в структуре хромосом, метилировании ДНК и профилях модификаций гистонов — которые не вызываются мутировавшим геном — обычно классифицируются как «истинные» эпигенетические аберрации. Превосходными примерами этих более пластичных систем являются стохастические «выборы» в раннем эмбриональном развитии, репрограммируемые пересадкой ядра, транскрипционная память, геномный импринтинг, мозаичная инактивация Х-хромосомы, центромерная идентичность и прогрессия опухоли. Генетика и эпигенетика, таким образом, оказываются тесно связанными явлениями, и обеим им присуще их воспроизведение в ходе клеточных делений, которое, в том что касается генетического контроля, охватывает также и зародышевый путь, если мутации возникают в зародышевых клетках В случае других — часто слишком легко классифицируемых — эпигенетических модификаций мы не знаем, являются ли они лишь отражением мелких и преходящих реакций на изменения во внешней среде или же вносят существенный вклад в фенотипические различия, которые затем могут поддерживаться на протяжении многих делений соматических клеток, хотя и не бесконечного их числа, и иногда могут затрагивать зародышевый путь. Даже при наших весьма продвинутых сегодня знаниях об эпигенетических механизмах какие-либо новые доводы в пользу ламаркизма отсутствуют или почти отсутствуют.

17. Основные вопросы в эпигенетических исследованиях

В этой книге обсуждаются фундаментальные концепции и общие принципы, объясняющие, как происходят эпигенетические явления, какими бы загадочными они не казались. Наша конечная цель — представить читателю современные представления о механизмах, направляющих и формирующих эти концепции, на фоне разнообразных биологических данных, из которых они возникли. Всего лишь за несколько лет эпигенетические исследования дали интригующие и замечательные сведения и революционные открытия; тем не менее, многие давно поставленные вопросы остаются без ответа (рис. 3.21). Хотя и соблазнительно набросать широкими мазками выводы и предложить на обсуждение общие правила, основывающиеся на этом прогрессе, мы предостерегаем от этой тенденции, подозревая, что будут обнаружены многочисленные исключения из этих правил. Например, ясно, что имеют место значительные различия между организмами. В особенности степень и тип гистоновых модификаций, варианты гистонов, метилирование ДНК и использование механизма РНКи существенно варьируют от одноклеточных до многоклеточных организмов.

Имеются, однако, множество оснований с новой энергией взяться за исследовательские программы, нацеленные на молекулярный анализ эпигенетических явлений. Элегантные биохимические и генетические исследования уже позволили успешно и беспрецедентным образом проанализировать многие функциональные аспекты этих путей. Поэтому можно было бы предсказать, что тщательный анализ эпигенетических переходов в разных типах клеток (например, стволовые versus дифференцированные; покоящиеся versus пролиферирующие) выявит ключевые признаки плюрипотентности (Bernstein et al., 2006; Boyer et al., 2006; Lee et al., 2006). Весьма вероятно, что это окажется ценным в определении того, какие изменения хроматина существенны во время нормальной дифференцировки в сравнении с болезненными состояниями и туморогенезом. Например, ожидается, что использование таких подходов, как крупномасштабное картирование на нормальных, опухолевых или ES-клетках — получение «эпигенетического ландшафта» вдоль по длине целых хромосом (Brachen et al., 2006b; Squazzo et al., 2006; Epigenomics AG, ENCODE, GEN-AU,


Рекомендуем почитать
Сила обоняния. Как умение распознавать запахи формирует память, предсказывает болезни и влияет на нашу жизнь

Обоняние оказывает наиболее сильное влияние на наши эмоции по сравнению с другими чувствами и контролирует наше поведение значительнее, чем мы предполагаем. Нейробиолог, профессор анатомии Университета Квебека в Труа-Ривьере (Канада) Иоганнес Фраснелли доступно объясняет, каким образом тренировка обоняния влияет на мозг человека, как меняют наше обоняние тревога и депрессия, как связана потеря обоняния с нейрогенеративными заболеваниями, а также затрагивает ряд других любопытных тем – не только из области нейробиологии, анатомии и психологии, но и из сферы пищевых предпочтений жителей разных стран, открывая перед нами интереснейший мир запахов и ощущений. «Несмотря на то что мы обоняем всегда – собственно, мы воспринимаем запахи еще до рождения, – и несмотря на то что обоняние имеет непосредственную “проводную” связь с лимбической системой, а значит, с нашим чувственным миром, люди в большинстве своем считают обоняние наименее значимым из пяти чувств.


186 суток на орбите (спросите у космонавта)

Тим Пик увлекается марафонским бегом, альпинизмом и лыжным спортом, воспитывает сына и ходит в спелеологичес кие походы в Западном Суссексе. А еще Тим прошел отбор в программу Европейского космического агентства (EKA). На шесть мест для полетов в открытый космос претендовало более 8000 участников… А сегодня Тим Пик – единственный космонавт во всей Великобритании. 15 декабря 2015 года в 14:03 Тим Пик в должности второго борт инженера отправился с космодрома Байконур к МКС, чтобы провести на орбите 186 суток и узнать все о том, как жить и выживать в космосе. Что чувствовал Тим, вращаясь вокруг Земли быстрее, чем ускоряющаяся пуля? Каково это есть, спать и вообще жить в космосе? Что делать, когда нечего делать? Как вообще обстоят дела в современном космосе? Вернувшись домой, Тим решил поделиться всем пережитым с землянами.


Знание-сила, 2009 № 06 (984)

Ежемесячный научно-популярный и научно-художественный журнал.


Темные архивы. Загадочная история книг, обернутых в человеческую кожу

Ряд старинных книг, на первый взгляд ничем не отличающихся от других антикварных изданий, стал отправной точкой для странного и шокирующего исследования библиотекаря и журналистки Меган Розенблум. Главная их тайна заключалась отнюдь не в содержании, а в обложках: они были сделаны из человеческой кожи. Откуда произошли эти книги, и кто стоял за их созданием? Для чьих коллекций делались антроподермические издания, и много ли таких было сделано? В «Темных архивах» Меган Розенблум рассказывает, как она совместно с командой ученых, экспертов и других библиотекарей изучала эту мрачную тему, как, идя по следам различных слухов, они пытались выяснить правду.


«Северянка» уходит в океан

Автор этой книги, молодой ученый Владимир Ажажа, — счастливый человек. Ему и его товарищам довелось исполнить то, о чем только мечтали Жюль Верн и другие фантасты — через иллюминаторы специального подводного корабля заглянуть в тайны морских глубин. В 1957 году решением Советского правительства современная боевая подводная лодка была разоружена и переоборудована. Так родилась «Северянка»— единственная в мире научно-исследовательская подводная лаборатория. О ее создании, первых плаваниях, неожиданных открытиях и встречах с еще неведомыми обитателями морской пучины, о тяжелых трудовых буднях первооткрывателей-подводников, о их дружбе и мужестве повествует эта захватывающая книга. [Адаптировано для AlReader].


Краткая история биологии. От алхимии до генетики

Знаменитый писатель фантаст, ученый с мировым именем, великий популяризатор науки, автор около 500 фантастических, исторических и научно-популярных изданий приглашает вас в увлекательное путешествие по просторам науки о живой природе.В книге повествуется о сложном пути развития биологии с глубокой древности до наших дней. Вы узнаете о врачах и фиолософах античности, о монахах и алхимиках Средневековья, о физиках, геологах и палеонтологах века Просвещения, о современных ученых, внесших огромный вклад в науку, которая стала родоначальницей многих новейших научных направлений.