Эпигенетика - [26]
Что касается понимания развития у животных. Drosophila с давних пор была и остается постоянным генератором генетической энергии Основываясь на пионерской работе Меллера (Muller, 1930), было получено множество мутаций, влияющих на развитие, в том числе мутации, вызывающие гомеотические трансформации и эффект положения мозаичного типа; эти мутации описываются ниже (глава 5). Мутации, вызывающие гомеотические трансформации, привели к мысли, что могли бы существовать регуляторные механизмы для установления и поддержания клеточной идентичности/памяти; позже было показано, что они регулируются системами Polycomb и tnthorax (главы 11 и 12). Что касается эффекта положения мозаичного типа (PEV), то активность гена диктуется структурой окружающего хроматина, а не нуклеотидной последовательностью ДНК. Эта система оказалась особенно информативной для выявления факторов, участвующих в эпигенетическом контроле (глава 5). Полагают, что свыше 100 супрессоров мозаичности [Su(var)] кодируют компоненты гетерохроматина. Без фундамента, созданного этими имеющими важное значение исследованиями, были бы невозможны открытие первых метилтрансфераз лизинов в гистонах (HKMTs) (Rea et al. 2000) и вытекающие из него достижения в области метилирования лизина гистонов. Как нередко случается в биологии, у дробянковых дрожжей и у растений был проведен сравнительный скрининг, выявивший мутанты по сайленсингу, которые оказались функционально консервативными с генами Su(var) у Drosophila.
Применение методов обратной генетики с использованием библиотек RNAi у червя-нематоды С. elegans внесло существенный вклад в наше понимание эпигенетического регулирования в ходе развития многоклеточных. Здесь исследования, в которых тщательно прослеживалась судьба клеток и которые позволили детализировать все пути развития для каждой клетки, позволили высветить тот факт, что системы Polycomb и tritorax, вероятно, возникли одновременно с появлением многоклеточности (см. разделы 12 и 13). В частности, эти механизмы эпигенетического контроля имеют существенное значение для регуляции генов в зародышевом пути (глава 15).
Роль эпигенетики в развитии млекопитающих в основном была выяснена на мышах, хотя ряд исследований был распространен на разнообразные линии клеток человека и первичные клеточные культуры. Технологии нокаута и направленных вставок («knock-out» и «knock-in») оказались мощным инструментом для функционального расчленения ключевых эпигенетических регуляторов. Например, мыши, мутантные по метилтрансферазе ДНК, Dnmt1, позволили выяснить функциональную роль метилирования ДНК у млекопитающих (Li et al., 1992). Эта мутация является эмбриональной леталью и демонстрирует нарушение импринтинга (глава 18). Было также показано, что нарушение метилирования ДНК вызывает нестабильность генома и возобновление активности транспозонов, в частности в зародышевых клетках (Walsh et al., 1998; Bourc’his and Bestor, 2004). Охарактеризовано приблизительно 100 факторов, регулирующих хроматин (т. е. ферменты, модифицирующие гистоны и ДНК, компоненты комплексов ремоделинга нуклеосом и механизма РНКи), которые повреждены у этих мышей. Мутантные фенотипы затрагивают пролиферацию клеток, коммитирование клеточных линий, пластичность стволовых клеток, стабильность генома, репарацию ДНК и процессы сегрегации хромосом, как в соматических клетках, так и в зародышевом пути. Неудивительно, что большинство этих мутаций связаны также с развитием заболеваний и рака. Таким образом, многие из этих ключевых успехов в изучении эпигенетического контроля были достигнуты с использованием тех преимуществ, которые обеспечивались уникальными биологическими особенностями, свойственными многим, если не всем, вышеупомянутым модельным организмам. Без этих биологических процессов и их тщательного функционального анализа (генетического и биохимического) многие из недавних успехов в области эпигенетического контроля оставались бы труднодостижимыми.
3. Определение эпигенетики
Из вышеприведенного обсуждения вытекает один острый вопрос: какова та обшая нить, которая связывает разнообразные эукариотические организмы с фундаментальными эпигенетическими принципами? Различные эпигенетические явления объединены, главным образом, тем обстоятельством, что у всех организмов, обладающих настоящим ядром (эукариоты), ДНК не является «голой». Напротив, эта ДНК существует в виде тесного комплекса со специализированными белками, и вместе они составляют хроматин. В своей простейшей форме хроматин — т. е. ДНК, накрученная вокруг нуклеосомных единиц, состоящих из небольших гистоновых белков (Kornberg, 1974), — первоначально рассматривался как пассивная упаковочная структура, служащая для сворачивания и организации ДНК. Однако с помощью разнообразных ковалентных и нековалентных механизмов, выявляемых в настоящее время с большой быстротой, возникают разные формы хроматина (см. раздел 6). В число этих механизмов входит множество посттрансляпионных модификаций гистонов, энергозависимые процессы ремоделинга хроматина, мобилизующие или изменяющие структуру нуклеосом, динамические вставка новых гистонов (вариантов) в нуклеосомы и выход из них, а также направляющая роль малых некодирующих РНК. Сама ДНК у многих высших эукариот также может ковалентно модифицироваться путем метилирования цитозиновых остатков (обычно, но не всегда в динуклеотидах CpG). В совокупности эти механизмы создают набор взаимосвязанных метаболических путей, которые все вместе порождают вариации в полимере хроматина (рис. 3.3).
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.