Эпигенетика - [27]

Шрифт
Интервал

Многие, хотя и не все из этих модификаций и изменений хроматина, являются обратимыми и, следовательно, вряд ли воспроизводятся в зародышевом пути. Временные метки привлекательны потому, что они вызывают изменения в хроматиновой матрице в ответ на внутренние и внешние стимулы (Jaenisch and Bird. 2003) и тем самым регулируют доступность для транскрипционной машины и (или) возможность ее работы, необходимые для того, чтобы «прочесть» лежащую в основе хроматина матрицу ДНК (Sims et al., 2004; Глава 10). Некоторые модификации гистонов (такие как метилирование лизинов), участки метилированной ДНК и измененные нуклеосомные структуры могут, тем не менее, оставаться стабильными на протяжении нескольких клеточных делений. Благодаря этому возникают «эпигенетические состояния», обеспечивающие клеточную память, которые до сих пор остаются недооцененными и малопонятными. С этой точки зрения, «сигнатуры» хроматина могут рассматриваться как высокоорганизованные системы хранения информации, которые могут индексировать отдельные участки генома и обеспечивать ответ на сигналы, поступающие из внешней среды и диктующие программы экспрессии генов.

>Рис. 3.3. Генетика vs. эпигенетика

>ГЕНЕТИКА: мутации (красные звездочки) в матрице ДНК (зеленая спираль) наследуются соматически и через зародышевый путь. ЭПИГЕНЕТИКА: изменения в структуре хроматина модулируют использование генома с помощью (1) модификаций гистонов (mod), (2) ремоделинга хроматина (remodeler). (3) вариантного состава гистонов (желтая нуклеосома), (4) метилирования ДНК (Me) и (5) некодирующих РНК. Метки на хроматиновой матрице могут наследоваться при клеточных делениях и в совокупности вносят вклад в детерминацию клеточного фенотипа


Значение хроматиновой матрицы, способной реализовать генетическую информацию, заключается в том, что она обеспечивает многомерность уровней считывания информации с ДНК. Возможно, это действительно необходимо, учитывая огромные размеры и сложность эукариотического генома, особенно у многоклеточных организмов (см. детали в разделе 11). У таких организмов оплодотворенное яйцо претерпевает развитие, начиная с единичного генома, который становится эпигенетически запрограммированным на образование множества различных «эпигеномов» в более чем 200 разных типов клеток (рис. 3.4). Было высказано предположение, что эта запрограммированная изменчивость составляет некий «эпигенетический код», существенно расширяющий информационный потенциал генетического кода (Strahl and Allis, 2000; Turner, 2000; Jenuwein and Allis, 2001). Несмотря на всю привлекательность этой гипотезы, мы подчеркиваем, что для ее проверки и проверки других соблазнительных теорий требуется еще поработать. Выдвигаются и альтернативные точки зрения, согласно которым в гистонах чисто комбинаторные «коды», подобные триплетному генетическому коду, мало вероятны или, во всяком случае, далеко еще не установлены (Schreiber and Bernstein, 2002; Henikoff, 2005). Несмотря на такую неопределенность, мы склоняемся к общему мнению, что комбинация ковалентных и нековалентных механизмов действует таким образом, что создаются состояния хроматина, которые могут матрицироваться [be templated] при клеточных делениях и в процессе развития с помощью механизмов, которые только еще начинают выясняться. Вопрос о том, каким именно образом эти измененные состояния хроматина надежно воспроизводятся при репликации ДНК и в митозе, остается одной из фундаментальных проблем для будущих исследований.

>Рис. 3.4. ДНК vs. хроматин

>Геном: инвариантная нуклеотидная последовательность ДНК (зеленая двойная спираль) особи. Эпигеном: общий состав хроматина, индексирующий весь геном в любой данной клетке. Он варьирует в зависимости от типа клетки и реакции на внутренние и внешние сигналы, которые он получает. (Нижняя часть рисунка) эпигеномная диверсификация у многоклеточных организмов происходит в ходе развития по мере того, как дифференцировка прогрессирует от единичной стволовой клетки (оплодотворенный эмбрион) к более коммитированным клеткам. Реверсия дифференцировки или трансдифференцировка (голубые линии) требует репрограммирования эпигенома клетки


Фенотипические изменения, происходящие в ряду клеточных поколений в ходе развития многоклеточного организма, были описаны Уодцингтоном как «эпигенетический ландшафт» (Waddington, 1957). Тем не менее, весь спектр клеток, от стволовых до полностью дифференцированных, обладает идентичными нуклеотидными последовательностями ДНК, но заметно различается по профилю генов, которые реально экспрессируются этими клетками. Исходя из этого, позднее пришли к определению эпигенетики как «ядерной наследственности, которая не основывается на различиях в нуклеотидной последовательности ДНК» (Holliday, 1994).

Со времени открытия двойной спирали ДНК и ранних трактовок эпигенетики наши знания об эпигенетическом контроле и лежащих в его основе механизмах существенно возросли, заставляя некоторых описывать эти знания в таких более «возвышенных» терминах, как «область науки», а не просто «феномены» (см Wolfe and Matzke, 1999; Roloff and Nuber, 2005; глава 1). За последнее десятилетие значительный прогресс был достигнут в отношении многих семейств энзимов, активно модифицирующих хроматин (см. ниже). Таким образом, используя современную терминологию, эпигенетику можно в молекулярном (механистическом) плане определить как «сумму изменений в хроматиновой матрице, которые в совокупности устанавливают и воспроизводят различные паттерны экспрессии генов (транскрипции) и сайленсинга на основе одного и того же генома».


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.