Эпигенетика - [28]
4. Хроматиновая матрица
Нуклеосома является фундаментальной повторяющейся единицей хроматина (Komberg, 1974). С одной стороны, эта базовая единица хроматина состоит из белкового октамера, содержащего по две молекулы каждого канонического (или корового) гистона (Н2А, Н2В, H3 и Н4), вокруг которого накручены 147 п.н. ДНК. Детальные межмолекулярные взаимодействия между коровыми гистонами и ДНК были определены в выдающихся исследованиях, приведших к получению рентгеновской картины (с атомным, 2.8 Е, разрешением) нуклеосомы, собранной из рекомбинантных частей (рис. 3.5) (Lugeret al., 1997). Картины мононуклеосом, а также возникающих структур более высокого порядка (тетрануклеосом), имеющие более высокое разрешение (Schalch et al., 2005), продолжают привлекать наше внимание, обещая помочь в объяснении физиологически важного субстрата, на котором развертывается действие если не всего, то большей части ремоделинга хроматина и механизма транскрипции
Коровые гистоновые белки, составляющие нуклеосому, являются очень небольшими и сильно основными. Они состоят из глобулярного домена и гибких (относительно неструктурированных) «гистоновых хвостов», торчащих с поверхности нуклеосомы (рис. 3.5). Судя по аминокислотной последовательности, гистоновые белки крайне консервативны в диапазоне от дрожжей до человека. Такая высокая степень консервативности подкрепляет общий взгляд, согласно которому эти белки, даже неструктурированные хвостовые домены, вероятно выполняют критичные функции. Хвосты, особенно хвосты гистонов H3 и Н4, в действительности содержат важный ключ к изменчивости нуклеосом (и, отсюда, хроматина), поскольку многие из остатков являются объектами экстенсивных посттрансляционных модификаций (см. стандартную номенклатуру, используемую в этом руководстве, на обратной стороне задней части переплета и список известных модификаций гистонов в Приложении 2).
Ацетилирование и метилирование коровых гистонов, особенно H3 и Н4, были одними из первых описанных ковалентных модификаций, и долгое время предполагалось, что они коррелируют с положительными и отрицательными изменениями в транскрипционной активности. Со времени пионерских работ Олфри и сотрудников (Allfrey et al., 1964) были идентифицированы и охарактеризованы многие типы ковалентных модификаций гистонов; в их числе — фосфорилирование, убиквитинирование, сумоилирование, АДФ-рибозилирование, биотинилирование гистонов, изомеризация пролина и другие вероятные типы, ожидающие своего описания (Vaquero et al., 2003). Эти модификации происходят в специфических сайтах и остатках, некоторые из них изображены на рис. 3.6 и перечислены в Приложении 2. Эту ковалентную маркировку катализируют специфические ферменты и ферментные комплексы, часть которых описывается далее в этом обзоре и в отдельных главах. Поскольку в ближайшие годы эти перечни будут продолжать расти, нашим намерением было упомянуть лишь отдельные метки и энзимы, которые могли бы проиллюстрировать то, что, как нам кажется, является общими понятиями и принципами.
>Рис. 3.5. Структура нуклеосомы
>(Слева) Модель нуклеосомы с разрешением 2.8 Е. (Справа) Схематическое представление организации гистонов внутри октамерного кора, вокруг которого обернута ДНК (черная линия). Образование нуклеосомы происходит сперва через откладку на ДНК тетрамера H3/Н4. а затем двух наборов димеров Н2А/Н2В. Неструктурированные аминотерминальные гистоновые хвосты выпячиваются из нуклеосомного кора, состоящего из структурированных глобулярных доменов восьми гистоновых белков
В определенных районах хроматина нуклеосомы могут содержать вариантные гистоновые белки вместо какого-нибудь корового (канонического) гистона. Текущие исследования показывают, что это различие в составе способствует выполнению специализированных функций этими маркированными районами хромосом. В настоящее время известны вариантные белки для коровых гистонов Н2А и H3, но не известно ни одного для гистонов Н2В и Н4. Мы подозреваем, что варианты гистонов, хотя они нередко являются минорными в смысле их количества и потому более трудными для исследования, весьма богаты в отношении содержащейся в них информации и играют весьма существенную роль в отношении их вклада в эпигенетическое регулирование (детали см в разделе 8 и главе 13).
5. Более высокие уровни организации хроматина
Хроматин, этот состоящий из ДНК и нуклеосом полимер, является динамической молекулой, существующей во многих различных конфигурациях. Ранее в течение длительного времени хроматин разделяли на эухроматин и гетерохроматин, исходя из картины окрашивания ядра красителями, которые цитологи использовали для визуализации ДНК. Эухроматин представляет собой деконденсированный хроматин, хотя он может быть активным или неактивным в отношении транскрипции. Гетерохроматин можно определить в широком смысле как высококомпактизированный и «молчащий» хроматин. Он может существовать как постоянно «молчащий» хроматин (конститутивный гетерохроматин), где гены организма лишь изредка экспрессируются в клетках любого типа, или как хроматин, репрессированный в некоторых клетках в ходе специфического клеточного цикла или на специфической стадии развития (факультативный гетерохроматин) Таким образом, имеется спектр состояний хроматина, и накопленная за многие годы литература позволяет предполагать, что хроматин является высоко динамичной структурой, склонной к ремоделингу и реструктурированию по мере получения физиологически релевантных сигналов, поступающих по «идущим вверх» (upstream) сигнальным путям. Однако лишь недавно достигнут значительный прогресс в раскрытии молекулярных механизмов, управляющих этими процессами ремоделинга.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.