Электроны - [12]
— И все? — спрашивает с недоумением читатель.
— Все, — отвечает, физик. — Все, касающееся ответа на ваш вопрос. Но впереди вас ждут ответы на многие другие интересные вопросы. Мы ведь не сказали, в каких случаях нас ждут встречи с элементарной частицей положительного электричества. Нам предстоит также узнать, что электрические частицы характеризуются не только зарядом и массой, — но и другими свойствами.
Но сначала поведем разговор о структуре атома.
Как построен атом из электрических частиц? Ответ был получен с помощью лучей, испускаемых радием.
Об этом замечательном веществе и о большом семействе естественных и искусственных радиоактивных элементов мы поговорим в четвертой книге. Пока нам надо знать, что радий непрерывно испускает жесткое электромагнитное излучение (гамма-лучи), поток электронов (в свое время называвшийся бета-лучами) и альфа-лучи, которые представляют собой двукратно заряженные ионы атома гелия.
Замечательный английский физик Эрнест Резерфорд (1871–1937) в 1911 г. предложил так называемую планетарную модель атома, к которой он пришел на основании тщательных исследований рассеяния альфа-частиц различными веществами. Резерфорд проводил опыты с фольгой золота, толщина которой составляла всего лишь одну десятую микрометра. Оказалось, что из 10 000 альфа-частиц лишь одна отклоняется на угол, превышающий 10 градусов.
В этих поразительных по простоте опытах фиксировалось прохождение каждой отдельной частицы. Разумеется, современная техника позволяет провести измерения совершенно автоматически.
Итак, сразу же становится ясным, что атомы в основном состоят… из пустоты. Редкие лобовые столкновения надо понимать так: внутри атома имеется положительно заряженное ядро. Около ядра расположены электроны. Они очень легкие и поэтому не составляют серьезного препятствия для альфа-частицы. Электроны тормозят альфа-частицу, но столкновение с каждым отдельным электроном не может отклонить частицу от ее пути.
Резерфорд допустил, что силы взаимодействия, между одноименно заряженным ядром атома и альфа-частицей являются кулоновскими силами. Предположив далее, что масса атома сосредоточена а его ядре, он рассчитал вероятность отклонения частиц на заданный угол и получил блестящее совпадение теории с опытом.
Вот так физики и проверяют выдуманные ими модели.
— Модель предсказывает результаты опыта?
— Да.
— Значит, она отображает действительность?
— Ну, зачем же так резко. Модель объясняет ряд явлений — значит, она хороша. А ее уточнение — дело будущего…
Результаты опытов Резерфорда не оставляли сомнения в справедливости следующего утверждения: электроны под действием кулоновских сил движутся около ядра.
Из теории следовали и некоторые количественные оценки, которые подтвердились в дальнейшем. Размеры самых малых атомных ядер оказались равными примерно 10>-13 см, в то время как размеры атома — порядка 10>-8 см.
Сопоставляя результаты опыта с расчетами, оказалось возможным оценить и заряды сталкивающихся ядер. Эти оценки сыграли большую, если не основную, роль в трактовке периодического закона строения элементов.
Итак, модель атома построена. Но немедленно возникает следующий вопрос. Почему электроны (отрицательно заряженные частицы) не падают на ядро (заряженное положительно)? Почему атом устойчив? Что же тут непонятного, скажет читатель. Ведь планеты не падают на Солнце. Сила электрического происхождения является, как и сила тяготения, центростремительной. силой и обеспечивает круговое движение электронов около ядра.
Но в том-то и дело, что аналогия между планетной системой и атомом носит лишь поверхностный характер. Как мы узнаем позже, с точки зрения общих законов электромагнитного поля атом обязан излучать электромагнитные волны. А, впрочем, можно и не знать теорию электромагнетизма. Вещество, т. е. атомы, способно излучать свет и тепло. Раз так, то атом теряет энергию, а значит электрон должен падать на ядро.
Каков же выход из положения? Он очень «прост»: надо примириться с фактами и возвести эти факты в ранг закона природы. Этот шаг и был сделан в 1913 г. великим физиком нашего столетия Нильсом Бором (1885–1962).
Как и все первые шаги, этот шаг был относительно робким. Мы изложим новый закон природы, который не только спас атом Резерфорда, но и заставил нас прийти к выводу, что механика больших тел неприменима к частицам малой массы.
Природа устроена так, что ряд механических величин, таких, например, как момент импульса и как энергия, для любой системы взаимодействующих частиц не могут иметь непрерывный ряд значений. Напротив, атом, о котором у нас идет речь сейчас, или атомное ядро, о строении которого мы будем говорить позже, имеют свою, свойственную только данной системе последовательность энергетических уровней. Имеется наинизший уровень (нулевой). Энергия системы не может быть меньше этого значения. В случае атома это означает, что есть такое состояние, в котором электрон находится на некотором минимальном расстоянии от ядра.
Изменение энергии атома может происходить только скачком. Если скачок произошел «вверх», то это значит, что атом поглотил энергию. Если скачок произошел «вниз», то атом излучил энергию.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.
…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.