Электроны - [14]
Само слово «спин» возникло следующим образом. Это английское слово, которое в переводе на русский язык означает «быстро вращаться». Чтобы представить себе, чем отличаются два электрона, сидящие на одной ступеньке, предлагалось думать, что один электрон вращается по, а другой — против часовой стрелки около своей собственной оси. Эта модель была подсказана поверхностным сходством атома и планетной системы. Раз электрон — нечто вроде планеты, то почему-бы не разрешить ему вращаться около своей оси. Я должен очередной раз огорчить читателя: наглядно представить себе спин электрона — задача невозможная. А вот как его измерить, мы скажем в следующей главе.
Но это не единственное важное заключение (к которому нас привело внимательное изучение спектров атомов). Второе заключение состояло в том, что ступеньки энергии отстоят друг от друга на неравные расстояния и могут быть разбиты на группы.
За первой ступенькой, которую называют К-уровнем, следует энергетический разрыв и за ним группа из 8 электронов, обозначаемая буквой L, затем группа из 18 электронов, обозначаемая буквой М… Не будем описывать расположение уровней и порядок их заполнения для всех атомов. Картина оказывается не столь уж простой и описание ее потребовало бы много места. Детали в нашей маленькой книжке роли не играют, и про ступеньки я упомянул лишь для того, чтобы пояснить, в чем же сходство атомов, которые находятся друг под другом в таблице Менделеева. Оказывается, у них одинаковое число электронов на верхней группе ступенек.
Становится ясным химическое понятие валентности атома. Так, у лития, натрия, калия, рубидия, цезия и франция по одному электрону на верхней группе ступенек. У бериллия, магния, кальция и т. д. — по два электрона. Валентные электроны слабее всего связаны с атомом. Поэтому при ионизации атомов, стоящих в первом столбце, образуются легче всего однозарядные частицы. Ионы бериллия, магния и пр. несут на себе два заряда, и т. д.
Химики называют молекулой мельчайшего представителя вещества. Физики большей частью пользуются этим словом лишь в том случае, если этот мельчайший представитель реально существует как отдельное маленькое тело.
Существует ли молекула поваренной соли? Конечно, ответит химик, и напишет формулу: NaCl. Поваренная соль — это хлористый натрий. Молекула состоит из одного атома натрия и одного атома хлора. Однако этот ответ лишь формально справедлив. На самом же деле ни в кристаллике поваренной соли, ни в растворе соли в воде, ни в парах хлористого натрия мы не обнаруживаем пары атомов, которая вела бы себя как одно целое. Как мы говорили во второй книге, в кристаллике каждый атом натрия окружен шестью хлорными соседями. Все эти соседи равноправны, и никак нельзя сказать, какой из них «принадлежит» данному атому натрия.
Растворим поваренную соль в воде. Окажется, что раствор — превосходный проводник тока. Строгими опытами, о которых мы уже говорили, можно доказать, что электрический ток представляет собой поток отрицательно заряженных атомов хлора, движущихся в одну сторону, и поток положительно заряженных атомов натрия, движущихся в противоположную сторону. Так что при растворении атомы хлора и натрия также не образуют крепко связанную пару атомов.
После того как модель атома установлена, становится ясным, что анион хлора представляет собой атом хлора с «лишним» электроном, — напротив, катиону натрия «не достает» одного электрона.
Можно ли сделать отсюда вывод, что и твердое тело построено не из атомов, а из ионов? Да. Это доказывается многими опытами, на описании которых мы не станем останавливаться.
Ну, а пары хлористого натрия? И в парáх мы не находим молекул. Пар хлористого натрия состоит из ионов или из различных очень неустойчивых групп ионов. О молекулах ионных соединений можно говорить лишь в химическом смысле этого слова.
Ионные соединения обязательно растворяются в воде. Такие растворы, классическим примером которых являются простые соли металлов вроде хлористого натрия, обладают хорошей проводимостью и поэтому называются сильными электролитами.
Приведем теперь несколько примеров веществ, которые построены из настоящих молекул — из молекул в физическом смысле этого слова. Это кислород, азот, углекислый газ, углеводороды, углеводы, стероиды, витамины… список можно было бы продолжать весьма долго.
Всякие классификации всегда несколько условны. Поэтому я должен предупредить читателя, что иногда мы сталкиваемся и с такими случаями, когда в одном агрегатном состоянии вещество состоит из физических молекул, а в других — нет. К таким веществам относится такое важное, как вода. Молекулы водяного пара несомненно отдельные тельца. А вот в кристаллах льда «оконтурить» одну молекулу и сказать, что вот этот атом водорода связан только с вот тем атомом кислорода, уже трудновато.
Как бы то ни было, класс молекулярных кристаллов весьма обширен.
Во второй книге мы уже говорили о том, как построены молекулярные кристаллы. Напомним, что в кристалле углекислого газа, формула которого СО>2, атом углерода имеет двух очень близких кислородных соседей. И во всех остальных случаях, изучая структуру молекулярного кристалла, мы сразу же видим, что имеется возможность разбить кристалл на тесно расположенные группы атомов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
Книга посвящена применению законов теории вероятностей к различным жизненным ситуациям и в разных областях науки. В ней рассказывается, как пользуются законом вероятности физики и кинорежиссеры, селекционеры и юристы, социологи и механики и т.д.
…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…
Эта книга в основном о научных методах исследования.Применение их в естествознании способствовало невиданному его успеху. В науках же, изучающих духовную жизнь людей, эти методы только начинают внедряться и, естественно, сталкиваются с рядом трудностей.В книге показано, каков характер этих трудностей, как научное знание борется с легковерием, пустословием, лжеучениями и как забвение научного подхода к исследованиям тех или иных явлений открывает дорогу всевозможным «чудесам» к которым, в частности, можно отнести и телепатию.
Александр Дементьев – журналист (работал в таких изданиях, как РБК, «Ведомости», Лента.ру), закончил МПГУ (бывш. МГПИ им. Ленина) по специальности общая и экспериментальная физика. Автор самого крупного научно-популярного канала «Популярная наука» на «Яндекс. Дзен». Перед вами – уникальная книга, которая даст возможность по-новому взглянуть на космос. Человечество стоит на пороге больших открытий за пределами нашей планеты. И они кардинально изменят жизнь людей! Из книги вы узнаете: • Что ждет Землю и Солнце в будущем.
Квантовая физика – очень странная штука. Она утверждает, что одна частица может находиться в двух местах одновременно. Больше того, частица – это еще и волна, и все происходящее в квантовом мире может быть представлено как взаимодействие волн – или частиц, как вам больше нравится. Все это было понятно уже к концу 1920-х годов. За это время было испробовано немало разных более или менее убедительных интерпретаций. Известный популяризатор науки Джон Гриббин отправляет нас в захватывающее путешествие по «большой шестерке» таких объяснений, от копенгагенской интерпретации до идеи множественности миров. Все эти варианты в разной степени безумны, но в квантовом мире безумность не равносильна ошибочности, и быть безумнее других не обязательно значит быть более неверным.
Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.
Что случилось с Венерой? Как Сатурн стал властелином колец? Где искать Девятую планету? Почему мы не видим облако Оорта? Что мы знаем о самой большой звезде? Как живут звезды после смерти? Как галактики воруют друг у друга? Как сфотографировать черную дыру? Какая галактика самая большая? Эта книга отправит вас в космическое путешествием вместе с экспертами журнала New Scientist. Стартуя от Солнца, мы посетим планеты земной группы, газовые гиганты и их спутники, пересечем облако Оорта и выйдем за границы Млечного Пути.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.