Электроны - [11]
m∙g = a∙v.
Плотность масла легко определить независимыми опытами, диаметр капли измеряется микроскопом. Раз так, то масса капли вычисляется без труда. Падение капли происходит медленно, и, нанеся черточки на стекло микроскопа, мы с помощью секундомера найдем достаточно точно скорость падения капли v. Тогда из написанного выше уравнения находится коэффициент сопротивления а.
А теперь включим поле. Удобнее всего добиться такого положения вещей, чтобы капля начала равномерно подниматься. К двум силам, которые были, прибавилась третья — сила со стороны электрического поля, напряженность которого Е нам известна (отношение напряжения к расстоянию между пластинами конденсатора). Равномерное движение вверх означает, что уравновесились три силы. Условие этого равновесия будет иметь вид:
q∙E — m∙g = a∙v'.
Новое значение скорости v' измеряется тем же микроскопом. Итак, все величины, входящие в уравнение, известны, кроме величины заряда капли. Вычислим значение этого заряда и запишем его в тетрадь, которую обязательно ведет любой аккуратный экспериментатор.
Вот теперь мы подошли к главной выдумке. Ток в электролите, рассуждал Милликен, переносится ионами разных знаков. Но ведь ионы можно образовать и в газе. Воздух ионизуется самыми разными приемами. Можно, например, всю установку поместить около рентгеновской трубки. Рентгеновские лучи ионизуют воздух. Это было превосходно известно в те времена. Но если капля заряжена, то она будет притягивать к себе ионы противоположного знака. Как только ион прилипнет к капле, заряд ее изменится. А как только заряд станет другим, то и капля изменит свою скорость, которую мы сразу же найдем новым измерением.
Наблюдения показали, что идея верна. После включения рентгеновской трубки разные капли то и дело скачком начинали менять свою скорость. Не спуская глаз с одной капли, наблюдатель мерил разности скоростей до и после включения рентгеновской трубки. По формуле, которую мы привели, сразу же вычислялись значения q.
Вы еще не поняли, для чего это делается? Но подумайте получше. Если существует элементарный электрический заряд, то измеренные величины должны быть равны ему, если к капле присоединился один одновалентный ион, или кратны величине элементарного заряда, если к капле прицепилось несколько ионов.
Проделав свои опыты для капель масла, воды, ртути и глицерина, меняя знаки заряда капель, Милликен заполнил свою тетрадь сотнями чисел значений q, и все они оказались кратными одной и той же величине, той самой, которая была найдена исследованиями электролиза.
После того как Милликен опубликовал свои результаты, даже у скептиков не осталось сомнения в том, что электрический заряд встречается в природе дискретными порциями. А ведь, строго говоря, и опыты Милликена не доказывают непосредственно существование электрона как частицы.
Но гипотезы опережают факты. В зернистой природе электричества кое-кто был уверен уже в начале девятнадцатого века. Заряд иона впервые рассчитал Стони в 1891 г. и он же предложил термин «электрон», но не для частицы, а для заряда одновалентного отрицательного иона. Опыты Томсона заставили подавляющее большинство физиков поверить в существование электрона как частицы. Друде первый недвусмысленно определил электрон как частицу, несущую элементарный заряд отрицательного электричества.
Так что электрон получил признание до того, как его «увидели».
Прямым же доказательством существования электрона являются проделанные позже тонкие опыты. Слабый пучок частиц заставляют падать на экран и их можно сосчитать поодиночке. Каждый электрон дает вспышку на светящемся экране. Впрочем, уже давно для этой цели употребляются не светящиеся экраны, а специальные счетчики, называемые по имени их изобретателя счетчиками Гейгера. В двух словах идея этого счетчика заключается в том, что один электрон, как спусковой крючок револьвера, дает начало сильному импульсу тока, который легко зарегистрировать. Таким образом физик имеет возможность установить число электронов, приходящих в какую-либо ловушку за одну секунду. Если в качестве такой ловушки взять металлическую колбу, внутрь которой будут попадать электроны, то колба постепенно зарядится количеством электричества, достаточным для того, чтобы его можно было точно измерить. Для нахождения заряда электрона остается поделить количество электричества на число пойманных электронов.
Вот только после этого можно сказать: существование электрона перестало быть гипотезой. Это факт. Со скоростью гоночного автомобиля мы пролетели мимо открытий, заложивших фундамент современной физики. Но такова уж их судьба! Новые дела теснят старые, и даже узловые события, происшедшие при строительстве храма науки, переходят в ведение историков. Теперь, пожалуй, можно ответить на вопрос, что такое электричество. Электрический флюид — это поток электрических частиц. Тело электрически заряжено, если число частиц одного знака превосходит число частиц другого знака.
— Ну и объяснение, — негодует читатель. — А что такое электрическая частица?
— Разве не ясно? Частицы называются электрическими, если они взаимодействуют по закону Кулона.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
Книга посвящена применению законов теории вероятностей к различным жизненным ситуациям и в разных областях науки. В ней рассказывается, как пользуются законом вероятности физики и кинорежиссеры, селекционеры и юристы, социологи и механики и т.д.
…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…
Эта книга в основном о научных методах исследования.Применение их в естествознании способствовало невиданному его успеху. В науках же, изучающих духовную жизнь людей, эти методы только начинают внедряться и, естественно, сталкиваются с рядом трудностей.В книге показано, каков характер этих трудностей, как научное знание борется с легковерием, пустословием, лжеучениями и как забвение научного подхода к исследованиям тех или иных явлений открывает дорогу всевозможным «чудесам» к которым, в частности, можно отнести и телепатию.
Александр Дементьев – журналист (работал в таких изданиях, как РБК, «Ведомости», Лента.ру), закончил МПГУ (бывш. МГПИ им. Ленина) по специальности общая и экспериментальная физика. Автор самого крупного научно-популярного канала «Популярная наука» на «Яндекс. Дзен». Перед вами – уникальная книга, которая даст возможность по-новому взглянуть на космос. Человечество стоит на пороге больших открытий за пределами нашей планеты. И они кардинально изменят жизнь людей! Из книги вы узнаете: • Что ждет Землю и Солнце в будущем.
Квантовая физика – очень странная штука. Она утверждает, что одна частица может находиться в двух местах одновременно. Больше того, частица – это еще и волна, и все происходящее в квантовом мире может быть представлено как взаимодействие волн – или частиц, как вам больше нравится. Все это было понятно уже к концу 1920-х годов. За это время было испробовано немало разных более или менее убедительных интерпретаций. Известный популяризатор науки Джон Гриббин отправляет нас в захватывающее путешествие по «большой шестерке» таких объяснений, от копенгагенской интерпретации до идеи множественности миров. Все эти варианты в разной степени безумны, но в квантовом мире безумность не равносильна ошибочности, и быть безумнее других не обязательно значит быть более неверным.
Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.
Что случилось с Венерой? Как Сатурн стал властелином колец? Где искать Девятую планету? Почему мы не видим облако Оорта? Что мы знаем о самой большой звезде? Как живут звезды после смерти? Как галактики воруют друг у друга? Как сфотографировать черную дыру? Какая галактика самая большая? Эта книга отправит вас в космическое путешествием вместе с экспертами журнала New Scientist. Стартуя от Солнца, мы посетим планеты земной группы, газовые гиганты и их спутники, пересечем облако Оорта и выйдем за границы Млечного Пути.
В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.