Электроны - [10]
Убедившись при помощи светящегося экрана в том, что раскаленная нить испускает электроны, мы приступаем с помощью отклоняющих пластин к определению отношения заряда к массе. Результат оказывается следующим. Отношение для электрона в 1840 раз больше, чем это же отношение для самого легкого иона, а именно иона водорода. Мы делаем отсюда заключение, что электрон в 1840 раз легче иона водорода. Это значит, что масса электрона равна 9∙10>-28 г.
Однако читатель вправе заметить, что мы слишком торопимся. Ведь нельзя же из измерения отношения заряда к массе электрона делать заключение, что его масса меньше массы иона. А может быть заряды положительного иона и электрона совсем разные?
Первое определение отношения заряда к массе электрона было проведено еще в конце прошлого века замечательным физиком Джозефом Джоном Томсоном (1856–1940). (Друзья называли его Джиджи. Вероятно, это сокращение, которое часто встречаешь в мемуарной литературе, вызвано не столько любовью англичан ко всякого рода аббревиатурам, как тем, что в девятнадцатом веке жил и работал другой замечательный физик, носивший ту же фамилию. Это Вильям Томсон, который за свои научные заслуги был возведен в дворянское достоинство, после чего стал именоваться лордом Кельвином.) Конечно, катодная трубка, которой он пользовался, была гораздо менее совершенной, чем современный осциллограф. Томсон Превосходно понимал, что его измерение лишь делает вероятным дискретность электрического заряда и существование наименьшей порции электричества.
Как это ни кажется странным, несмотря на то, что многие физики наблюдали поведение катодных и анодных лучей, было еще много сторонников гипотезы, что эти лучи имеют волновую природу. Эти исследователи не видели необходимости признать, что токи, текущие по металлическому проводу, по жидкости и проходящие через газы и вакуум, являются ближайшими родственниками. Они настаивали на более прямых доказательствах. И, конечно, мы можем это понять: для превращения гипотезы в факт косвенные аргументы недостаточны.
Итак, прежде всего было необходимо подкрепить эту уверенность прямыми измерениями величины заряда частицы. Эти попытки — отнюдь не безуспешные — начали предприниматься самим Томсоном и его учениками в первых годах XX века. Наиболее точные измерения были проведены в 1909 г. Робертом Милликеном.
Мысль о дискретности электричества представляется очень смелой, а вычисление элементарного заряда способом, с рассказа о котором мы начали главу, можно трактовать и иначе. Почему, например, не сказать, что анионы существуют в действительности, а отрицательное электричество является жидкостью, которая увлекается положительным ионом. Один ион захватывает одно количество этой жидкости, другой ион — другое количество, а опыт дает некую среднюю величину. Вполне здравое объяснение.
Как было только что сказано, опыты Томсона были сильным, но не решающим доводом в пользу существования электрона. Поэтому не приходится доказывать, сколь важен был для физики эксперимент, в котором наличие элементарного заряда электричества было доказано с такой степенью наглядности, что все сомнения были тут же отброшены в сторону. Такой опыт был поставлен в 1909 г. американским физиком Робертом Милликеном. Я не стану говорить о других работах этого ученого. Но одного этого исследования было достаточно для того, чтобы его имя вошло во все учебники по физике.
Идея этого замечательного опыта основывается на простом факте. Так же, как стеклянная палочка, потертая мехом, приобретает электрические свойства, так ведут себя и другие тела. Это явление называется электризацией трением. Но, собственно говоря, почему надо думать, что такое свойство присуще лишь твердым телам? Не будут ли электризоваться капельки масла, которые мы будем впрыскивать в какую-либо камеру, — ведь, проходя через горлышко пульверизатора, масло будет подвергаться трению. Оказывается, так оно и есть. Чтобы убедиться в этом, надо приготовить в принципе очень несложную установку: направить струю масляных брызг в пространство между горизонтально расположенными обкладками конденсатора и приспособить микроскоп, который позволял бы следить за движением капель. Пока электрическое поле не подано, капельки, естественно, будут падать вниз под действием силы тяжести. Капельки легкие, поэтому сила тяжести почти немедленно уравновесится силой сопротивления воздуха и они будут падать равномерно. Но как только на пластины накладывается напряжение, картина меняется. Движение капли становится либо ускоренным, либо замедленным, в зависимости от направления электрического поля. Милликен выбирал такое направление поля, которое заставляло капельку двигаться медленнее. Постепенно увеличивая поле, ему удавалось, так сказать, подвесить каплю в воздухе. Целыми часами наблюдал исследователь за одной каплей. С помощью поля он мог управлять ее движением и останавливать по желанию.
Что же можно вычислить с помощью такого опыта? Сначала обсудим сведения, которые будут получены наблюдениями в отсутствие поля. Равенство сил тяжести и сопротивления воздуха может быть записано в такой форме:
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
В заключительной из четырех книг «Физика для всех» изложены основные сведения, специфичные для электромагнитных волн, проблема теплового излучения, учение о спектрах, приведены примеры наиболее распространенных лазеров, много внимания уделено ядерной физике. Отдельные разделы посвящены обобщению механики на случай быстрых движений (специальная теория относительности) и движения малых частиц (волновая механика). Для широкого круга читателей, проявляющих интерес к данной науке.
…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.