Дилемма заключенного и доминантные стратегии. Теория игр - [18]

Шрифт
Интервал

Шевалье, который не хотел проигрывать. Азартные игры и появление вероятностей

В реальном мире сложные теории, касающиеся вероятностей, применяются в самых разных областях, так как в нашей жизни неопределенность встречается очень часто. Однако теория вероятностей берет свое начало именно в азартных играх. Можно утверждать, что теория случайных событий, основанная на понятии вероятности, начала формироваться во Франции в середине XVII века, в частности в 1654 году, в переписке Блеза Паскаля и Пьера Ферма, которые обсуждали вопросы, поставленные шевалье де Мере. Этот дворянин, знаток азартных игр, попросил Паскаля объяснить результаты некоторых азартных игр с игральными костями.

Антуан Гомбо, известный как шевалье де Мере (род. в Пуату, 1607—1685), посвятил большую часть жизни азартным играм и их анализу. Его интуитивные догадки много раз оказывались верными. По-видимому, он заработал приличную сумму различными азартными играми, где вероятность выигрыша и проигрыша одинакова. Например, такой считалась игра, где нужно было выбросить минимум одну шестерку броском четырех игральных костей. Однако Мере знал, что в этой игре один из игроков имеет преимущество. Он предложил новую игру, в которой требовалось минимум один раз выбросить две шестерки за 24 броска двух костей. Де Мере полагал, что преимущество одного из игроков здесь будет таким же, что и в исходной игре. Некоторое время спустя он убедился, что в действительности все происходит с точностью до наоборот. Поэтому примерно в 1654 году он обратился к Паскалю, чтобы тот нашел ошибку в его рассуждениях и объяснил, почему в новой игре у него не было преимущества.

Иллюстрация из «Книги игр» Альфонсо X Мудрого, на которой изображена игра в кости.


БЛЕЗ ПАСКАЛЬ (1623-1662)

Несмотря на смерть в раннем возрасте, этот французский ученый, математик и философ внес большой вклад в различные сферы науки и человеческой мысли. Он был вундеркиндом и уже в И лет участвовал в научных встречах, которые организовывал Марен Мерсенн. В 1640 году Паскаль публикует работу «Опыт о конических сечениях», в 1649 году подтверждает результаты работ Торричелли об атмосферном давлении. В 1642 году он сконструировал счетную машину, чтобы помочь отцу, сборщику налогов в Нормандии. Эта машина, получившая название паскалина, — одна из первых рабочих счетных машин. Некоторые экземпляры сохранились до наших дней и демонстрируются в музеях науки и техники. Счетная машина, предназначенная для расчетов в торговле, заинтересовала многих — от королевы Швеции Кристины до философа Готфрида Вильгельма Лейбница, который усовершенствовал машину Паскаля.

С вопросов шевалье де Мере об азартных играх началась переписка Паскаля и Пьера Ферма, в которой впервые формулируется теория вычисления вероятностей (Паскаль называл ее геометрией случайности). В пяти письмах, датированных 1654 годом, анализируются азартные игры, изучением которых до этого уже занимался Джероламо Кардано.

В еще одной работе в этой области, «Трактате об арифметическом треугольнике» (1654), Паскаль проанализировал и доказал свойства арифметического треугольника, известного под названием треугольник Паскаля. Треугольник Паскаля несколько лет спустя использовал Ньютон для определения биномиальных коэффициентов. В 1655 году Паскаль завершает занятия математикой и наукой вообще и удаляется в монастырь, посвятив остаток жизни философии и религии.


ПЬЕР ФЕРМА (1601-1665)

Это один из величайших математиков всех времен, несмотря на то что он не был профессиональным математиком и при жизни ему не удалось опубликовать свои труды, которые стали известны лишь благодаря переписке с великими учеными того времени: Декартом, Мерсенном и Паскалем.

Ферма изучал юриспруденцию и большую часть жизни провел в Тулузе, где приобрел известность как королевский советник парламента (т.е. член высшего суда) этого города. Это позволило ему в свободное время отдаваться подлинному увлечению — математике. Область математики, которая интересовала его сильнее всего и в которую он внес наибольший вклад, — теория чисел. Одна из его теорем (для любого натурального числа n>2 уравнение x>n + y>n = z>n не имеет натуральных решений) была доказана лишь в конце XX века. Он также внес заметный вклад в геометрию и определение экстремумов функций для решения задач оптимизации еще до того, как было создано дифференциальное исчисление. В его переписке 1654 года с Блезом Паскалем впервые предприняты попытки определить понятие вероятности.

Укрощение случайности. Математическое изучение вероятностей

Чтобы познакомиться с понятием вероятности и его основными свойствами, попробуем решить две задачи, предложенные шевалье де Мере. Точная формулировка первой задачи такова: какова вероятность выбросить 6 очков минимум один раз, бросив игральные кости четыре раза? Для решения этой задачи используется собственное свойство вероятности. Оно гласит: вероятность того, что произойдет некоторое событие либо обратное ему, равна 1. Поэтому сначала мы вычислим вероятность того, что ни в одном из бросков игральных костей не выпадет 6. Очевидно, что при броске одного кубика


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Золотое сечение. Математический язык красоты

Можно ли выразить красоту с помощью формул и уравнений? Существует ли в мире единый стандарт прекрасного? Возможно ли измерить гармонию с помощью циркуля и линейки? Математика дает на все эти вопросы утвердительный ответ. Золотое сечение — ключ к пониманию секретов совершенства в природе и искусстве. Именно соблюдение «божественной пропорции» помогает художникам достигать эстетического идеала. Книга «Золотое сечение. Математический язык красоты» открывает серию «Мир математики» — уникальный проект, позволяющий читателю прикоснуться к тайнам этой удивительной науки.


Том 20. Творчество  в  математике. По каким правилам ведутся игры разума

В чем состоит загадка творчества? Существуют ли правила созидания? Действительно ли решение сложной задачи можно найти только в моменты удивительного озарения? Этими вопросами, наверное, задавался каждый из нас. Цель этой книги — рассказать о правилах творчества, его свойствах и доказать, что творчество доступно многим. Мы творим, когда мы размышляем, когда задаемся вопросами о жизни. Вот почему в основе математического творчества лежит умение задавать правильные вопросы и находить на них ответы.


Том 16. Обман чувств. Наука о перспективе

Физика, астрономия, экономика и другие точные науки основаны на математике — это понятно всем. Но взаимосвязь математики и творчества не столь очевидна. А ведь она куда глубже и обширнее, чем думают многие из нас. Математика и творчество развивались параллельно друг другу на протяжении веков. (Например, открытие математической перспективы в эпоху Возрождения привело к перевороту в живописи.) Эта книга поможет читателю посмотреть на некоторые шедевры живописи и архитектуры «математическим взглядом» и попробовать понять замысел их создателей.


Секреты числа Пи. Почему неразрешима задача о квадратуре круга

Число π, пожалуй, самое удивительное и парадоксальное в мире математики. Несмотря на то что ему посвящено множество книг, оно по праву считается самым изученным и сказать о нем что-то новое довольно сложно, оно по-прежнему притягивает пытливые умы исследователей. Для людей, далеких от математики, число π окружено множеством загадок. Знаете ли вы, для чего ученые считают десятичные знаки числа π? Зачем нам необходим перечень первого миллиарда знаков π? Правда ли, что науке известно все о числе π и его знаках? На эти и многие другие вопросы поможет найти ответ данная книга.