Диалоги о математике - [10]
Гиппократ. Согласен. Но к чему ты настаиваешь на этом?
Сократ. Погоди. Сначала подытожим все, что мы выяснили. Невозможно установить, виновна ли жен-щина во крови и плоти, живущая сегодня в Афинах, в то время как несомненно, что персонаж трагедии — Клитемнестра, которой, возможно, вообще не было на свете, виновна. Ты согласен?
Гиппократ. Я начинаю понимать, что ты хочешь сказать. Однако будет лучше, если ты сделаешь выводы.
Сократ. Заключение таково: мы знаем гораздо больше о людях, которые существуют только в нашем воображении, например о персонажах пьес, чем о реально живущих людях. Если мы говорим, что Клитемнестра виновна, то это означает, что так ее изобразил Эсхил в своей пьесе. Подобное положение и в математике. Мы уверены, что диагонали прямоугольника абсолютно одинаковы, потому что это следует из определения прямоугольника, данного математиками.
Гиппократ. Ты имеешь в виду, Сократ, что наш парадоксальный результат действительно правилен и можно иметь значительно более определенные знания о несуществующих вещах, например о математических понятиях, чем о реальных объектах? Мне кажется, теперь я понимаю, отчего так получается. Понятия, которые мы сами создали, известны нам полностью по самой их природе и мы можем о них узнать все, поскольку у них нет иной жизни, кроме как в нашем воображении. А вот объекты, существующие в реальном мире, не тождественны с нашими представлениями о них, поскольку они всегда неполны и приблизительны. Именно поэтому наши знания о действительно существующих вещах никогда не могут быть исчерпывающими или окончательными.
Сократ. Совершенно верно, дорогой мой друг, ты сказал лучше, чем смог бы это сделать я сам.
Гиппократ. Это твоя заслуга, Сократ, потому что ты помог мне понять эти вещи. Теперь я не только вижу, что Театет был совершенно прав, говоря, что я должен изучать математику, если хочу получить надежные знания, но и знаю, почему он был прав. Однако если уж ты так терпеливо разъяснял мне все до сих пор, то, прошу тебя, не покидай меня и теперь, потому что один мой вопрос, пожалуй наиболее важный, еще остался без ответа.
Сократ. Какой вопрос?
Гиппократ. Вспомни, Сократ, что я пришел просить твоего совета, должен ли я изучать математику. Ты помог мне попять, что математика и только математика может дать те основательные знания, которые я хотел бы иметь. Но какая польза от этих знаний? Ясно, что если получить некоторые знания о реальном мире, хотя бы неполные и не вполне определенные, то их значение будет несомненно и для отдельного человека и для страны в целом. Даже изучение звезд полезно, например, для мореплавателей. Но какая польза от изучения несуществующих предметов, которым как раз и занимается математика?
Сократ. Дорогой мой друг, я уверен, что ты знаешь ответ и только хочешь проверить меня.
Гиппократ. Клянусь Гераклом, я не знаю ответа. Помоги мне, прошу тебя.
Сократ. Согласен. Попытаемся найти его. Мы уже убедились, что математические понятия создаются самими математиками. Но выбирает ли математик эти понятия произвольно, как ему хочется?
Гиппократ. Я уже говорил тебе, что еще недостаточно знаю математику. Но мне кажется, математик гак же свободен в выборе объектов своего исследования, как поэт в выборе персонажей своих пьес, и как поэт наделяет своих персонажей чертами, которые ему приятны, так и математик вкладывает в понятия такие свойства, какие ему хочется.
Сократ. Но тогда существовало бы столько же математических истин, сколько самих математиков Как же ты объяснишь в таком случае то обстоятельство, что все математики изучают одни и те же понятия и проблемы? И почему нередко математики, живущие далеко один от другого и даже не знающие друг друга, открывают одни и те же истины и изучают одни и те же понятия? Если они говорят о числах, то имеют в виду одни и те же числа, а прямые, круги, квадраты, шары и правильные тела одинаковы для всех.
Гиппократ. Нельзя ли объяснить это тем, что все люди мыслят одинаковым образом и поэтому одни и те же вещи они представляют одинаково?
Сократ. Дорогой Гиппократ, мы получим удовлетворительное объяснение не раньше, чем рассмотрим предмет обсуждения со всех точек зрения. Как объяснить те нередкие факты, когда математики, живущие далеко друг от друга, скажем один в Тарепте, а другой на острове Самос, открывают одну и ту же истину, даже не зная один другого? И в то же время я никогда не слышал, чтобы два поэта написали одну и ту же поэму.
Гиппократ. Ия никогда не слышал об этом. Но вспоминаю, что Театет рассказывал мне об очень интересной открытой им теореме о несоизмеримых величинах. Он показал теорему своему учителю Теодору, а тот в свою очередь вытащил письмо от Архитаса, где было изложено то же доказательство, почти слово в слово.
Сократ. В поэзии это невозможно. Вот видишь, появилась новая проблема. Но продолжим. Как ты объяснишь, что математики разных стран обычно согласны по поводу математических истин, в то время как о государственных вопросах персы и спартанцы, например, имеют совершенно противоположные мнения, чем в Афинах, и, более того, даже между собой мы часто не соглашаемся друг с другом?
Разве можно представить нашу жизнь без книг? Они сопровождают людей повсюду уже несколько тысяч лет. С ними связано множество любопытнейших историй: ловкого вора выдала сова, жившая в библиотеке; мальчик написал стихи за придуманного поэта; азартный коллекционер сжег редкую книгу; знаменитый писатель выдал свои сочинения за чужие; авантюристы дописали Гоголя и Мольера; автор «Робинзона Крузо» взял «интервью» у преступника, а Проспер Мериме одурачил Пушкина. Одни «книжные» истории похожи на настоящие детективы, другие вызывают улыбку, но все они оставили яркий след в истории.
В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.
Издание представляет собой исследование восточной литературы, искусства, археологических находок, архитектурных памятников. Повествование о могуществе и исчезновении городов и царств шумеров, хеттов, ассирийцев, скифов, индийцев сопровождается черно-белыми и цветными фотоиллюстрациями. В конце издания представлена хронологическая таблица заселения Древнего Востока. Красиво изданная, богато иллюстрированная книга для среднего и старшего возраста. Цветные полностраничные репродукции и черно-белые в тексте на каждой странице. На переплете: фрагмент выкопанной в Уре мозаичной плиты «Шумерское войско в походе». Издание второе.
Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.
Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.
Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии — открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.
В предлагаемой вниманию читателей книге американского популяризатора О. О. Байндера в общедоступной форме рассказывается о многочисленных космических загадках. Некоторые из них уже «с бородой», другие связаны с открытиями последних лет.
В этой книге затронут широкий круг проблем, связанных с биологией человека, — его место в природе, биологические и социальные особенности, закономерности его индивидуального и исторического развития, взаимоотношения с окружающей средой.Автор касается и многих других сторон человеческого бытия, которые приобрели в наши дни большую социальную и политическую значимость.Книга хорошо иллюстрирована, просто и ясно написана и будет интересна массовому читателю.
В книге известного популяризатора науки А. Азимова рассматривается сложный путь развития биологии с древних времен до наших дней. Автор уделяет внимание всем отраслям биологии, показывая их во взаимодействии со смежными науками.Читатель узнает о вкладе в биологию великих ученых всех времен — Гарвея, Левенгука, Геккеля, Дарвина, Пастера, Ивановского, Мечникова, Павлова и других.Написанная просто и доступно, книга будет интересным и полезным чтением для преподавателей высшей школы, учителей, студентов, школьников и для всех любителей естественных наук.
Книга известных американских ученых, супругов Лоруса Дж. Милна и Маргарет Милн, «Чувства животных и человека» — занимательный, а местами и поэтичный рассказ об ощущениях, свойственных живым существам. О сложных проблемах бионики авторы говорят легко и просто, без излишней наукообразности. Мы узнаем из книги, почему пчелы не видят красного цвета, как птицы ориентируются при перелетах, каким образом летучие мыши чувствуют преграды на своем пути и многое, многое другое. При этом Милны все время сравнивают чувства животных с человеческими чувствами, наводят читателя на мысль о том, что живые организмы с их сложной и малоизученной структурой органов чувств представляют большой интерес не только для биологов, но и для физиков, математиков и особенно конструкторов, создающих самоорганизующиеся устройства.