Чужой разум. Осьминоги, море и глубинные истоки сознания - [28]

Шрифт
Интервал

Подобное взаимодействие между восприятием и поступком обнаруживается также в явлении, которое психология называет константностью восприятия[97]. Мы способны распознавать объект как один и тот же, когда смотрим на него с разных точек. Если вы приближаетесь к стулу или отодвигаетесь от него, вам в норме не кажется, что он растет, уменьшается или отодвигается, поскольку ваш мозг автоматически корректирует изменения образа, вызванные вашими действиями, а иногда и те изменения, которые от вас не зависят — например, в освещении. Константность восприятия наблюдается у достаточно широкого спектра животных, в том числе осьминогов и некоторых пауков — наряду, естественно, с позвоночными. Эта способность, по-видимому, возникла независимо в нескольких различных группах.

Другой путь эволюции опыта ведет к интеграции. Потоки информации, поступающие от разных чувств, объединяются в целостную картину. Наш собственный пример живо иллюстрирует это: мы ощущаем мир таким способом, который связывает то, что мы видим, с тем, что мы слышим и осязаем. Наш опыт, как правило, представляет собой целостные образы.

Это может показаться неизбежным следствием того, что глаза и уши у нас приделаны к общему мозгу, однако это не так. Это всего лишь один из способов «подключения», и есть животные, у которых единство опыта обеспечивается несравненно хуже нашего. Например, у многих животных глаза расположены по бокам головы, а не фронтально. В таком случае у каждого глаза отдельное поле зрения и каждый связан лишь с одним полушарием мозга. С таким животным ученым легко проводить опыты — можно воздействовать лишь на одно полушарие, прикрыв животному один глаз. Тогда можно задаться вопросом, на который как будто бы есть очевидный ответ: если показать что-то только одному полушарию, получит ли эту информацию другое полушарие? Мы не рассматриваем раненых или прооперированных животных — пусть естественная связь между полушариями не будет нарушена. Логично предположить, что информация будет передаваться. С чего бы эволюции распорядиться так, чтобы только половина животного понимала, что оно видит? Но когда этот вопрос стали изучать на голубях, оказалось, что информация не передается[98]. Голубей обучали выполнять простое задание, закрыв им один глаз, затем каждого голубя экзаменовали на то же самое задание так, чтобы он смотрел другим глазом. В опыте с девятью птицами восемь не продемонстрировали никаких признаков «межглазной передачи». Навык, которому вроде бы обучалась птица целиком, на самом деле был доступен лишь половине птицы — вторая половина о нем понятия не имела.

Такие опыты проводились и на осьминогах[99]. Осьминог, обученный решать визуальные задачи с одним закрытым глазом, поначалу вспоминал решение только тогда, когда видел задачу тем же глазом, что и раньше. После дополнительного обучения они стали справляться с задачей, глядя другим глазом. Осьминоги отличались от голубей в том, что какая-то доля информации все же передавалась, но они отличались и от нас, поскольку передавалась она нелегко. Позже зоологи, в частности Джорджио Вальортигара из Университета Триеста, открыли множество других подобных «разрывов» в процессе обработки информации, связанных с тем, что мозг разделен на два полушария[100]. Многие виды, по-видимому, более чутко реагируют на появление хищников в левом поле зрения. Некоторые виды рыб и даже головастиков предпочитают держаться так, чтобы видеть сородичей слева от себя. С другой стороны, когда речь идет о поиске пищи, многие животные лучше воспринимают то, что находится справа от них.

Такая специализация как будто несет явные невыгоды: либо животное уязвимо для нападения с одной стороны, либо хуже находит пищу с другой. Однако Вальортигара и его коллеги полагают, что у нее есть и преимущества. Если разные задачи требуют разных методов обработки информации, оптимальным может быть мозг, у которого полушария специализируются на решении разных задач и не слишком тесно связаны между собой.

Эти открытия напоминают опыты на людях с «рассеченным мозгом»[101]. В тяжелых случаях эпилепсии иногда помогает перерезание мозолистого тела, соединяющего правое и левое полушария человеческого мозга. После подобных операций люди обычно ведут себя вполне нормально, и понадобилось немало времени, чтобы исследователи заметили нечто необычное. Но если разным половинкам мозга такого пациента предъявить разные стимулы, нередко проявляется поразительная разобщенность. Операция словно бы породила две разумных личности, с разными навыками и опытом, в одной голове. Левое полушарие мозга, как правило (хотя бывают исключения), ответственно за речь, и когда вы разговариваете с пациентом, у которого рассечено мозолистое тело, отвечает вам именно левое полушарие. Хотя правое полушарие обычно неспособно к речи, оно может управлять левой рукой. Поэтому оно может выбирать предметы на ощупь или рисовать. В ходе различных экспериментов каждому полушарию предъявляются разные изображения. Если затем спросить человека, что он видел, он сумеет описать словами то, что показывали левому полушарию, но правое полушарие, управляющее левой рукой, может не согласиться. Это специфическое расщепление восприятия, наблюдаемое у людей с рассеченным мозгом, для многих животных — привычное свойство их повседневной жизни.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Дарвиновская революция

Эта книга – синтез эволюционных идей. И тех, которыми могут гордиться ученые XIX века, в том числе Чарлз Дарвин, и тех, что были изложены в современности исследователями общества и культуры. Автор дает подробный и беспримерный по детализации обзор естественнонаучных и религиозных представлений, которые господствовали в просвещенном мире до того, как теория Дарвина заняла свое место в научной картине. Он также описывает драматичные сдвиги, имевшие место в период становления нового мировоззрения, и всесторонне анализирует его влияние на то, как мы рассуждаем сегодня. В формате a4.pdf сохранен издательский макет.


Фантомы мозга

В. С. Рамачандран — всемирно известный невролог, психолог, доктор медицины, доктор философии, директор Исследовательского центра высшей нервной деятельности, профессор психологии и нейрофизиологии Калифорнийского университета в Сан-Диего. В своей книге «Фантомы мозга» автор рассказывает, как работа с пациентами, страдающими неврологическими нарушениями причудливого характера, позволила ему увидеть в новом свете архитектуру нашего мозга и ответить на многие вопросы: кто мы такие, как конструируем образ своего тела, почему смеемся и огорчаемся, как мы обманываем сами себя и мечтаем, что толкает нас философствовать, учиться, творить…