Что такое наука, и как она работает - [34]

Шрифт
Интервал

Важность этого конкретного примера трудно переоценить. Упрощенное общее понимание ГДМ, которое часто применяется в науке, заключается в том, что предсказания могут быть выведены из гипотез, данные могут быть собраны для проверки предсказаний, и если данные не подтверждают предсказание, то можно обоснованно отклонить гипотезу. Как было сказано ранее, это нормальная стратегия человеческого мышления. Как часто вы слышите фразу: «Мы знаем, что X неправда из-за Y»? Однако в действительности ситуация такова, что ни обычное, ни научное мышление не работают столь ограниченным образом. Как показывают предыдущие примеры, логическая последовательность может поддерживаться по крайней мере тремя основными способами: (1) путем изменения теорий, (2) путем проверки данных и наблюдений, (3) путем изменения исходных предположений (изменения вспомогательных гипотез). Каждый способ пытается установить и поддерживать наивысший уровень согласия между теориями и наблюдениями, который можно предсказать на основе теорий, изменяя различные части уравнения. Это далеко не тот портрет науки, в котором ясные и однозначные данные позволяют логически и методологически отвергать теории; на практике для поддержания согласованности ГДМ могут выполняться все три этих маневра[62] (иногда одновременно).

В качестве классического исторического примера этого подхода в «точных науках» давайте рассмотрим теории гравитации и движения планет сэра Исаака Ньютона (ньютоновская механика). Ньютоновская механика была одной из величайших и наиболее успешных теорий в истории науки и до сих пор считается типичным примером научного триумфа и интеллектуального прорыва. Сделав некоторые базовые предположения (которые он назвал законами), Ньютон смог построить математическую систему, описывающую, как гравитационные силы определяют движение планет в нашей Солнечной системе и во всей Вселенной, — воистину великое достижение[63]! Однако, несмотря на почти полное совпадение предсказаний теории с наблюдениями ученых того времени, впоследствии были обнаружены расхождения. Первое — и самое известное — заключается в том, что орбита Урана отклоняется от траектории, предсказанной ньютоновской механикой. Следовательно, логическая целостность ГДМ была утрачена, так как наблюдение не соответствовало предсказанию теории.

Астрономы были согласны с тем, что движение Урана не соответствует теории Ньютона[64]. Способность ученых проверять и перепроверять одно и то же природное явление с течением времени остается сильной стороной науки; поэтому отклонение новых данных ничем не поможет теории — наблюдаемое явление никуда не денется.

На этом этапе строгое применение наблюдений должно было привести к опровержению теории Ньютона — независимо от того, сколько существует подтверждающих доказательств, одного неудачного дедуктивного предсказания достаточно, чтобы опровергнуть теорию. Действительно, можно было просто отвергнуть теорию Ньютона, но прочная сеть убеждений помешала это сделать — теория была настолько успешной во многих отношениях, что не было никакой нужды в ее спешном опровержении. Напротив, была предпринята попытка защитить одновременно как теорию, так и данные. С этой целью астрономы оспорили вспомогательные гипотезы, в частности о том, что не существует ранее неоткрытых планет. Поэтому было высказано предположение, что в космосе находится большое неизвестное тело, которое отклоняет Уран с предсказанного пути за счет сильного гравитационного притяжения.

И в самом деле, основываясь на расчетах и предсказаниях, сделанных Урбеном Леверье с использованием уравнений Ньютона, Иоганн Готфрид Галле открыл Нептун 23-24 сентября 1846 года[65]. Открытие этой ранее неизвестной планеты, влияющей на орбиту Урана, не только стало еще одним триумфом теории Ньютона, но и послужило еще одной иллюстрацией того, что данные, противоречащие предсказанию гипотезы, не обязательно требуют отказа от гипотезы. В этом случае одна из бесконечных исходных гипотез (то есть что нет дополнительных неоткрытых планет) была опровергнута вспомогательной гипотезой существования Нептуна. Поскольку вспомогательная гипотеза повлекла собственное предсказание, которое можно проверить экспериментально (Нептун можно было увидеть в телескопы), колесо ГДМ совершило новый оборот, и логическая целостность ГДМ была восстановлена. Этот последний момент имеет решающее значение, поскольку Поппер указал, что введение специального предположения для спасения гипотезы, которая была непроверяемой (например, которая не делала своих собственных прогнозов), делает всю гипотезу неопровержимой — в данном случае можно было искать новую, но заранее предсказанную планету.

Великий триумф открытия Нептуна послужил доказательством не только правильности механики Ньютона, но и научного подхода в целом. Леверье предсказал местонахождение Нептуна с точностью до градуса, что было в те годы удивительным достижением. Поэтому неудивительно, что Леверье подошел к другому разногласию между теорией Ньютона и наблюдаемыми данными с аналогичным энтузиазмом. Было замечено, что перигелий прецессии


Рекомендуем почитать
Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Бумага. О самом хрупком и вечном материале

Попробуйте представить мир без бумаги. Что нам останется? Да почти ничего. Бумага с нами везде. Книги, письма, дневники, а еще картонные подставки под пиво, свидетельства о рождении, настольные игры и визитные карточки, фотографии, билеты, чайные пакетики. Мы — люди бумаги. Но эпоха бумаги подходит к концу. Электронные книги и билеты заменяют бумажные, архивы оцифровывают. Мы вступаем в мир без бумаги, но Иэн Сэнсом рассказывает об этом самом парадоксальном из созданных человеком материале и доказывает, что в том или ином виде он всегда будет с нами.


Десять самых красивых экспериментов в истории науки

В наше время научные открытия совершатся большими коллективами ученых, но не так давно все было иначе. В истории навсегда остались звездные часы, когда ученые, задавая вопросы природе, получали ответы, ставя эксперимент в одиночку.Джордж Джонсон, замечательный популяризатор науки, рассказывает, как во время опытов по гравитации Галилео Галилей пел песни, отмеряя промежутки времени, Уильям Гарвей перевязывал руку, наблюдая ход крови по артериям и венам, а Иван Павлов заставлял подопытных собак истекать слюной при ударе тока.Перевод опубликован с согласия Alfred A, Knopf, филиала издательской группы Random House, Inc.


Безопасность жизнедеятельности. Шпаргалка

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать. Пособие предназначено для студентов высших и средних образовательных учреждений.