Четыре дамы и молодой человек в вакууме. Нестандартные задачи обо всем на свете - [80]
Вторая причина – наличие между реками Лена и Индигирка котловин, окруженных горными хребтами. Длинными зимними безветренными ночами в этих котловинах поверхность земли отдает очень много тепла, а за короткий зимний день с низко стоящим солнцем тепловые потери не могут восполниться. В результате воздух в котловинах становится очень холодным.
Нет, неправильно. Заглянем в справочник. При 0 ℃ давление насыщенных паров воды равно всего 4,6 мм рт. ст. – ничтожная величина по сравнению с атмосферным давлением. Но главное даже не в этом. Парциальное давление газа зависит только от температуры, а не от массы молекул (легкие молекулы имеют более высокую скорость, поэтому кинетическая энергия у них такая же, как у тяжелых молекул). Даже если половину молекул воздуха в данном объеме при данной температуре заменить легкими молекулами водорода, давление в сосуде не изменится. На самом деле падение давления (например, перед грозой) связано не с повышением влажности воздуха, а с атмосферными вихрями – циклонами.
1. Само слово «атмосфера» происходит от древнегреческого ἀτμός – «пар», σφαῖρα – «шар».
Приземный слой (в высоких широтах – до 10 км, у экватора – до 18 км) – тропосфера (др.-греч. τρόπος – «поворот, изменение», отсюда и слово «тропики»). В тропосфере содержится 80 % всей массы атмосферы, почти весь водяной пар, из которого формируются облака. Выше расположена стратосфера (лат. stratum – «настил, слой»), толщина которой в среднем составляет несколько десятков километров. На высотах примерно от 50 до 80 км расположена мезосфера (греч. μεσο – «средний, промежуточный»; этот корень можно найти в словах «мезодерма», «мезотелий», «мезофиты» и др. в биологии; «мезозавры», «мезозой» и «мезолит» в археологии; «мезоны» в физике и т. д.). Самые верхние слои атмосферы называются термосферой (греч. θερμός – «теплый»).
2. Причина необычного распределения температуры в верхних слоях атмосферы – особенности превращения солнечной энергии в тепловую на разных высотах. На очень больших высотах жесткое ультрафиолетовое солнечное излучение приводит к расщеплению молекул азота и кислорода на атомы (их там больше, чем молекул), образуются также свободные электроны и ионы. В результате слияния (рекомбинации) положительных и отрицательных зарядов происходит сильный разогрев атмосферы. То есть в термосфере жесткий солнечный ультрафиолет превращается в тепловую энергию.
С уменьшением высоты давление растет, интенсивность жесткого ультрафиолета падает, поэтому ионы уже не образуются. Но продолжает происходить расщепление молекул кислорода на атомы (длина волны более 242 нм), которые в результате реакции O + O>2 + M → O>3 + M приводят к образованию озона. Третья частица М (любой атом или молекула) нужна для отвода избытка энергии от молекулы О>3, иначе она немедленно распадется; такие тройные столкновения могут происходить только при достаточно высоком давлении. Здесь в теплоту превращается менее жесткий солнечный ультрафиолет. Озон сам способен поглощать ультрафиолет «средней жесткости» (длина волны до 310 нм). Именно эти процессы разогревают атмосферу на высотах порядка 50 км. В тропосфере воздух нагревается в основном от поверхности земли. Таким образом, сложная зависимость температуры от высоты объясняется игрой многих факторов, в числе которых давление воздуха, длина волны поглощаемого ультрафиолетового излучения, конвективные потоки теплого воздуха от земной поверхности.
3. Понятие температуры имеет смысл только при достаточно высоких давлениях (не менее 0,01 мм рт. ст.), когда концентрация молекул высока, они часто сталкиваются между собой и быстро обмениваются энергией, в результате чего их температура «выравнивается». На уровне моря давление р = 760 мм, концентрация частиц с = 2,6 · 10>19 1/см>3 (постоянная Лошмидта), средний свободный пробег между столкновениями λ = 0,086 мкм. На высоте 10 км р = 210 мм, с = 8,8 · 10>18, λ = 0,21 мкм. На высоте 50 км р = 0,76 мм, с = 2,3 · 10>16, λ = 0,078 мм. На высоте 100 км р = 0,0006 мм, с = 2,3 · 10>13, λ = 95 см. Наконец, на высоте 150 км р = 3,7 · 10>–6 мм, с = 7,4 · 10>10, λ = 18 м. На таких высотах одни частицы могут иметь низкую кинетическую энергию, а другие – чрезвычайно высокую!
Правильный ответ – в. Если удалить атмосферу, то в образовавшемся вакууме вода начнет интенсивно испаряться, одновременно охлаждаясь. Из-за полного отсутствия парникового эффекта, создаваемого атмосферой, средняя температура стала бы примерно такой же, как на Марсе (около –25 ℃), так что вся оставшаяся в океанах вода превратилась бы в лед, который продолжал бы испаряться до полного исчезновения воды с поверхности Земли.
1. Самый известный пример – Аральское море (оно же – озеро), в которое впадают Амударья и Сырдарья. В Ладожское озеро впадают Волхов, Свирь и другие реки.
2. Из Ладожского озера вытекает Нева, из Онежского – река Свирь, из Байкала вытекает Ангара, из озера Ильмень – река Волхов, из озера Белое (Вологодская область) – река Шексна, из озера Нери – знаменитая Ниагара, из всей системы Великих озер в Северной Америке сток происходит только по одной реке – Святого Лаврентия. Перечень можно продолжить.
В увлекательной форме изложены оставшиеся за рамками школьных учебников сведения о химической науке, величайших открытиях ученых-химиков, загадочных фактах и уникальных химических экспериментах.Для школьников, студентов и учителей, а также для всех, кто желает открыть для себя незнакомую, полную тайн и парадоксов химию.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Автор этой книги, доцент химического факультета МГУ, написал ее для всех любознательных людей. "Наука начинается с удивления", – сказал Аристотель. Прочитав сей труд, вы не раз удивитесь. А заодно узнаете, как работают в автомобиле подушки безопасности, из каких металлов делают монеты разных стран, какие бывают в химии рекорды, почему лекарство может оказаться ядом, как химики разоблачают подделки старинных картин, как журнальная шутка лишила победы "знатоков" в известной телевизионной игре "Что? Где? Когда?", а также многое другое.
Поскольку химия лежит в основе всего сущего, мы так или иначе сталкиваемся с ней каждый день. Мы слушаем рекомендации врачей, читаем инструкции к лекарствам, участвуем в дискуссиях о пользе или вреде продуктов питания, подбираем себе средства косметического ухода и т. д. И чем лучше мы ориентируемся в химической терминологии, тем увереннее чувствуем себя в современном мире.«Язык химии» – это справочник по этимологии химических названий, но справочник необычный. Им можно пользоваться как настоящим словарем, чтобы разобраться в происхождении и значении тех или иных терминов, в которых всегда так просто было запутаться.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.