Апология математики, или О математике как части духовной культуры - [5]

Шрифт
Интервал

Формулы тригонометрии, упомянутые выше, входят в школьную программу. Подавляющему большинству после школы они никогда не понадобятся, разве что на вступительных экзаменах, и их можно спокойно забыть. Знать — и не только знать, но и осознавать, понимать надо следующее (и именно это входит в обязательный, на наш взгляд, интеллектуальный багаж): треугольник однозначно определяется заданием любой его стороны и прилегающими к ней углами, и этот очевидный факт может быть использован и реально используется для измерения расстояний методом триангуляции. Если всё же кому-нибудь когда-нибудь и понадобятся формулы тригонометрии, их легко можно будет найти в справочниках. Учат ли в наших школах пользоваться справочниками? А ведь это умение несравненно полезнее, чем помнить формулы наизусть.

Наконец, о равенстве 3>2+ 4>2 = 5>2. Если положительные числа a, b, c обладают тем свойством, что a>2 + b>2 = c>2, то, по обратной теореме Пифагора, они представляют собою длины сторон некоторого прямоугольного треугольника; если они к тому же суть числа целые, их называют пифагоровыми. Вот ещё пример пифагоровой тройки: 5, 12, 13. Возникает естественный вопрос, а что будет, если в соотношении, определяющем пифагоровы числа, заменить возведение в квадрат на возведение в куб, в четвёртую, пятую и так далее степень? Можно ли привести пример таких целых положительных чисел a, b, c, чтобы выполнялось равенство a>3+ b>3= c>3, или равенство a>4+ b>4= c>4, или a>5+ b>5= c>5 и т. п.? Любую тройку целых положительных чисел, для которых выполняется одно из указанных равенств, условимся называть тройкой Ферма.

Только что сформулированным вопросом заинтересовался великий французский математик середины XVII века Пьер Ферма (вообще-то он занимался математикой, а заодно и оптикой, как хобби: служебные его обязанности состояли в заведовании отделом петиций тулузского парламента). Поиски требуемых примеров ни к чему не привели, и Ферма пришёл к убеждению, что их не существует. Утверждение о несуществовании троек Ферма принято называть Великой теоремой Ферма. Строго говоря, его следовало бы называть Великой гипотезой Ферма, поскольку автор утверждения не оставил нам его доказательства. Всё, что Ферма оставил потомкам на эту тему, — это две латинские фразы, написанные им около 1637 года на полях изданной в 1621 году в Париже на двух языках, греческом и латинском, «Арифметики» древнегреческого математика Диофанта. Указанное издание обладало широкими полями, и когда у Ферма появлялись те или иные мысли по ходу чтения, он записывал их на этих полях. И вот какие две фразы он, в частности, написал — приводим эти фразы в переводе: «Невозможно для куба быть записанным в виде суммы двух кубов, или для четвёртой степени быть записанной в виде суммы двух четвёртых степеней, или вообще для любого числа, которое есть степень больше двух, быть записанным в виде суммы двух таких же степеней. Я нашёл поистине удивительное доказательство этого предложения, но оно не уместится на полях [hanc marginis exiguitas non caperet; буквально: скудость поля его не вмещает]».

Своих математических открытий Ферма никогда не публиковал, часть их (да и то без доказательств) сообщалась им в частной переписке, а часть стала известной только после его смерти в 1665 году. К числу последних принадлежит и Великая теорема: в 1670 году старший сын Пьера переиздал в Тулузе Диофантову «Арифметику», включив в издание и 48 примечаний, сделанных его отцом на полях. Лишь в 1994 г. Эндрю Уайлс при участии своего ученика Ричарда Тэйлора доказал наконец Великую теорему — и притом доказал с использованием всей мощи современной математики, так что если сам Ферма и владел доказательством (что более чем сомнительно), то заведомо не таким. А до того Великая теорема оставалась Великой гипотезой.

Задача доказать гипотезу Ферма составила содержание Проблемы Ферма. Простота формулировки проблемы, доступной школьнику младших классов, делала её привлекательной для широких кругов любителей. Привлекательность усиливалась давностью постановки и ореолом некоей таинственности, сопутствующей постановке. А тут ещё в 1908 году была объявлена премия в сто тысяч германских марок за решение Проблемы Ферма. Вскоре мировая война обесценила премию, но было уже поздно: слух о премии привлёк к Проблеме Ферма ещё больше «старателей». Возникла особая разновидность людей, называемых ферматистами. Ферматисты — это люди, не имеющие специального математического образования, фанатично убеждённые в том, что они решили Проблему Ферма, и настойчиво ищущие признания. Признания они, естественно, не получили, но, завалив своими рукописями математические кафедры ряда крупных западных университетов, заставили эти кафедры занять оборонительную позицию: университеты стали возвращать авторам любые доказательства Великой теоремы Ферма, прилагая при этом стандартное письмо с указанием, что доказательство будет рассмотрено только после получения денежного залога. А известный гёттингенский профессор Эдмунд Ландау (избранный в 1932 году иностранным почётным членом Академии наук СССР) даже изобрёл специальный бланк, который он поручал заполнять своим аспирантам: «Дорогой сэр (мадам)! Мы получили Ваше доказательство Великой теоремы Ферма. Первая ошибка находится на странице…, строка…»


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.