Апология математики, или О математике как части духовной культуры - [7]
В качестве завершения темы снова вернусь в 1950-е годы. Посетителя офиса на Большой Калужской мне довелось увидеть ещё один раз. Это произошло на третьем этаже дома 9 по Моховой улице, в канцелярии механико-математического факультета Московского университета, где я тогда учился. Всё с той же скрипкой в авоське он вошёл в канцелярию, попросил лист бумаги и, примостившись у стола, стал писать. Не в силах сдержать любопытства, я заглянул ему через плечо. Каллиграфическим почерком выводились буквы: «…бывшего студента ‹…› Императорского университета прошение…» (какого именно университета — не помню). Затем он попросил указать ему специалиста по теории чисел. В качестве такового ему был назван заведующий кафедрой теории чисел член-корреспондент Гельфонд. В это время по коридору шёл член-корреспондент Гельфанд, к теории чисел отношения не имеющий. Услышав его фамилию, бывший студент Императорского университета бросился к нему навстречу. Всем было известно, что Гельфанд — математик великий, но непредсказуемый и легко может нахамить. Я не стал дожидаться столкновения двух тел и в страхе убежал.
Глава 3. Проблемы нерешённые и проблемы нерешимые
Проблема — это всегда требование что-то найти, указать. Это «что-то» может иметь самую различную природу: это может быть ответ на заданный вопрос, законопроект, доказательство теоремы, число (при решении уравнений), последовательность геометрических построений (при решении геометрических задач на построение). Опыт математики позволяет провести точную грань между проблемами нерешёнными и проблемами нерешимыми. Первые ждут своего решения, вторые же решения не имеют и иметь не могут, у них решения просто-напросто не существует.
К числу первых долгое время относилась проблема Ферма. В математике таких проблем много, но абсолютное большинство из них требует для понимания их формулировок специального образования. Нерешённых проблем с простыми формулировками гораздо меньше. Из них наиболее известны, пожалуй, следующие четыре проблемы теории чисел. Теория чисел (в ортодоксальном понимании этого термина) занимается только положительными целыми числами. Поэтому только такие числа разумеются здесь под словом «число».
Две проблемы о совершенных числах. Число 6 делится на 1, на 2, на 3 и на 6 — эти числа 1, 2, 3, 6 суть делители числа 6. Если из списка делителей числа 6 мы удалим само это число, а остальные сложим, получим 6. Действительно, 1 + 2 + 3 = 6. Тем же свойством обладает число 28. Его делителями служат числа 1, 2, 4, 7, 14, 28. Если их все, кроме 28, сложить, получим как раз 28: действительно, 1 + 2 + 4 + 7 + 14 = 28. В VI веке до н. э. это редкое свойство чисел вызывало мистический восторг у Пифагора и его учеников: по их мнению, оно свидетельствовало об особом совершенстве числа, обладающего таким свойством. А потому каждое число, совпадающее с суммой своих делителей, отличных от самого этого числа, получило титул совершенного. Первые четыре совершенных числа (6, 28, 496 и 8128) были известны уже во II веке н. э. А в сентябре 2006 года было обнаружено сорок четвёртое совершенное число; оно колоссально, в его десятичной записи около двадцати миллионов знаков. Все найденные совершенные числа оказались чётными. И вот две простые по формулировке, но не решённые до сих пор проблемы. Существуют ли нечётные совершенные числа? Конечна или бесконечна совокупность всех совершенных чисел? Эквивалентная формулировка второй проблемы: существует ли наибольшее совершенное число?
Две проблемы о простых числах. Напомним (мы говорим «напомним», потому что теоретически это должно быть известно из средней школы), что простым называется такое число, которое, во-первых, больше единицы, а во-вторых, не имеет других делителей, кроме единицы и самого себя. Ещё в III веке до н. э. в «Началах» Евклида было установлено, что среди простых чисел нет наибольшего, их ряд 2, 3, 5, 7, 11, 13, 17, 19 и т. д. никогда не кончается; иными словами, совокупность простых чисел бесконечна. Предложение 20 девятой книги «Начал» гласит, что простых чисел больше, чем в любом предъявленном списке таковых; доказательство же этого предложения состоит в описании способа, позволяющего для любого списка простых чисел указать простое число, в этом списке не содержащееся. Отметим, что Евклид нигде не говорит о совокупности простых чисел в целом — само представление о бесконечных совокупностях как об особых сущностях появилось значительно позже. Когда-то изучение простых чисел рассматривалось как чистая игра ума; оказалось, что они играют решающую роль во многих практических задачах криптографии.
Среди нерешённых проблем, связанных с простыми числами, приведём две: проблему Гольдбаха — Эйлера и проблему близнецов.
Первая была поставлена в 1742 году великим Леонардом Эйлером в его переписке с Христианом Гольдбахом. Основная деятельность обоих протекала в России; в 1764 году Гольдбах был похоронен в Москве, а Эйлер в 1783 году — в Петербурге.
Кто есть Эйлер, один из самых великих математиков за всю историю человечества, и в чём заключается его величие — всё это легко узнать, если заглянуть, как встарь, в энциклопедический словарь. Сведения же о том, что собой представляет Гольдбах, словари дают скупо; такие сведения следует искать в специальной литературе или же в Интернете; некоторые из фактов заслуживают того, чтобы здесь их изложить. Хотя математические статьи, опубликованные Гольдбахом в научных журналах, и не оставили сколько-нибудь заметного следа в математике, он был признанным членом математического сообщества своего времени. Он был лично знаком или состоял в переписке с рядом выдающихся умов, в том числе с Лейбницем и с Эйлером; переписка с Эйлером продолжалась 35 лет и прекратилась лишь со смертью Гольдбаха. Один из историков науки (кстати, правнук Эйлера и непременный секретарь Петербургской академии наук) писал: «Его [Гольдбаха] переписка показывает, что если он не прославился ни в одной специальности, то это следует приписать большой универсальности его познаний. То мы видим его обсуждающим ‹…› кропотливые вопросы классической и восточной филологии; то он пускается в нескончаемые археологические споры ‹…›». В своих письмах Гольдбах предстаёт как человек, наделённый и интуицией, и способностью чувствовать новое. Проблема Гольдбаха — Эйлера, например, возникла как реакция Эйлера на некое предположение, сообщённое ему Гольдбахом (предположение состояло в том, что всякое целое число, большее, чем 2, разлагается в сумму трёх слагаемых, каждое из коих есть либо простое число, либо единица). В России, куда он приехал в 1725 году в тридцатипятилетнем возрасте, Гольдбах сделал головокружительную карьеру. Он сразу получил место секретаря, а также историографа организуемой во исполнение замысла Петра I Императорской академии наук; именно он вёл (на латинском языке) первые протоколы Академии. С 1737 по 1740 год он был одним из двух лиц, осуществлявших административное управление Академией (другим был Шумахер; обоим по этому случаю был присвоен ранг коллежского советника). В конце 1727 года он был назначен наставником двенадцатилетнего императора Петра II. Рассказывают, что руководство по обучению царских детей, составленное Гольдбахом в 1760 году, применялось на практике в течение ста последующих лет. В 1742 году Гольдбах сделался ответственным работником министерства иностранных дел (как сказали бы теперь), стал получать награды, земли и чины и к 1760 году дослужился до чина тайного советника. Чин этот довольно точно отражал его обязанности, поскольку Гольдбах состоял в должности криптографа. Эйлеру тоже захотелось чина. Однако Екатерина II, благосклонно встретившая пожелания Эйлера относительно жалованья, казённой квартиры и обеспечения его трёх сыновей позициями и доходами, весьма дипломатично отказала: «Я дала бы, когда он хочет, чин, если бы не опасалась, что этот чин сравняет его с множеством людей, которые не стоят г. Эйлера. Поистине его известность лучше чина для оказания ему должного уважения».
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.