А ну-ка, догадайся! - [10]
Выясняется, однако, что профессор, не нарушив своего обещания о полной неожиданности проверки, назначил экзамен, например, на среду.
В статье философа У. В. Куайна из Гарвардского университета, опубликованной в 1953 г., речь шла о судье, приговорившем подсудимого к неожиданной казни через повешение. Подробный анализ этого парадокса и некоторые библиографические ссылки можно найти в главе «Казнь врасплох и связанный с ней логический парадокс» моей книги «Математические досуги» (М.: Мир, 1972, с. 95—109).
Большинство людей склонно считать первый шаг в рассуждениях Майкла (утверждение о том, что тигр не может находиться за последней дверью) правильным. Но коль скоро мы согласимся с этим выводом, то нам не останется ничего другого, как признать правильность и всех остальных рассуждений Майкла: ведь если тигр не может находиться за последней дверью, то аналогичные рассуждения позволяют исключить случай, когда тигр находится за предпоследней, предпредпоследней и т. д. дверью.
Но на самом первом шаге своих рассуждений Майкл все же допустил ошибку. Предположим, что он распахнул все двери, кроме последней. Может ли он сделать логически безупречный вывод о том, что за последней дверью тигра нет? Не может, потому что, придя к такому заключению, Майкл мог бы открыть последнюю дверь и совершенно неожиданно для себя обнаружить за ней тигра! Следовательно, парадокс остается в силе и в том случае, если осталась неоткрытой одна-единственная дверь.
Предположим, что некий мистер Смит, всегда говорящий, как вам хорошо известно, только правду, вручает вам коробку и говорит: «Откройте ее, и вы неожиданно обнаружите внутри яйцо». Можете ли вы, рассуждая логически, прийти к какому-нибудь заключению относительно того, находится ли внутри коробки яйцо, или его там нет? Если Смит сказал правду, то внутри коробки должно быть яйцо, но, поскольку вы знаете об этом, для вас не будет неожиданностью обнаружить яйцо в коробке. Следовательно, утверждение Смита ложно. С другой стороны, если это противоречие подтолкнет вас к выводу о том, что в коробке нет яйца (в этом случае утверждение Смита ложно), и вы, открыв коробку, неожиданно обнаружите в ней яйцо, то утверждение Смита истинно.
Логики сходятся на том, что хотя король знает о том, что держит данное им слово, Майклу об этом ничего не известно. Следовательно, он не может, рассуждая логически, прийти к выводу, чтя за любой дверью, в том числе и последней, нет тигра.
>Из глубин космического пространства на Землю высадился инопланетянин Омега.
>У Омеги было с собой самое совершенное оборудование для изучения деятельности головного мозга людей, позволявшее ему с точностью определять, какую из двух альтернатив выберет каждый из испытуемых.
>Омега обследовал большое число людей, используя для теста два ящика. В ящике А, прозрачном, лежал чек на 1000 долларов.
>В ящике В, непрозрачном, либо не было ничего, либо лежал чек на 1 000 000 долларов.
>Каждому испытуемому Омега говорил следующее.
>Омега. Перед вами две возможности. Во-первых, вы можете выбрать оба ящика и взять себе те деньги, которые в них находятся.
>Если бы я знал, что вы поступите именно так, то оставил бы ящик В пустым. В этом случае вы получите только 1000 долларов.
>Омега. Во-вторых, вы можете выбрать только ящик В. Если бы я знал, что вы поступите именно так, то положил бы в ящик В 1 000 000 долларов и он целиком достался бы вам.
>Этот мужчина решил выбрать только ящик В. Рассуждал он следующим образом.
>Мужчина. Я видел, как Омега провел не одну сотню тестов.
>Каждый раз он правильно предсказывал, какую из альтернатив выберет испытуемый. Каждый, кто выбирал оба ящика, получал всего лишь 1000 долларов. Выберу-ка я лучше только ящик В и стану миллионером.
>Эта женщина решила выбрать оба ящика. Рассуждала она следующим образом.
>Женщина. Омега уже определил, какую из альтернатив я выберу, и вышел из комнаты. Содержимое ящика теперь не изменится. Если он пуст, то пустым и останется, а если в нем миллион, то этот миллион никуда не денется.
>Выберу-ка я оба ящика и возьму все денежки, какие в них лежат.
>Чье решение, по-вашему, правильно? Оба рассуждения — мужчины и женщины — не могут быть правильными. Какое из них неправильно и в чем? Это новый парадокс, и даже специалисты не знают пока, как его решить.
Это последний и наиболее поразительный из парадоксов, связанных с предсказанием, которые обсуждают современные философы. Придумал его физик Уильям Ньюком, в честь которого он и был назван парадоксом Ньюкома. Впервые его опубликовал и проанализировал философ из Гарвардского университета Роберт Нозик. Работа Нозика опиралась на такие разделы современной математики, как «теория игр» и «теория решений».
Решение мужчины выбрать ящик В понять нетрудно. Рассуждения женщины станут понятнее, если мы вспомним, что Омега вышел из комнаты и, следовательно, не может изменить содержимое ящика В.
Если ящик В пуст, то так и останется пустым. Если в нем чек на миллион долларов, то этот чек никуда не исчезнет. Рассмотрим оба случая.
Если в ящике В находится чек на миллион долларов и женщина выбирает только ящик
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.
Книга известного американского популяризатора науки Mapтина Гарднера, посвященная поиску удачных идей для решений задач из области комбинаторики, геометрии, логики, теории чисел и игр со словами.Рассчитана на самый широкий круг читателей.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».Впрочем, именно такой и должна быть популярная книга.
Имя Мартина Гарднера (р. 1914) хорошо известно в России. За свою долгую жизнь он написал более 70 книг, ставших популярными во всем мире, многие из них издавались и на русском языке. Гарднер — автор огромного количества статей, посвященных математике (на протяжении 25 лет он вел колонку математических игр и фокусов в журнале «Scientific America»), а также фантастических рассказов и эссе на самые разные темы. В сборник «Когда ты была рыбкой, головастиком — я…» вошли статьи, посвященные вопросам, явлениям или событиям, особенно взволновавшим писателя в последние годы.
Как помочь ребенку полюбить математику? Эта книга поможет вам и вашим детям взглянуть по-новому на изучение математики, закрыть пробелы в знаниях и превратить учёбу в удовольствие.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Галилео Галилей заметил, что Вселенная – это книга, написанная на языке математики. Макс Тегмарк полагает, что наш физический мир в некотором смысле и есть математика. Известный космолог, профессор Массачусетского технологического института приглашает читателей присоединиться к поискам фундаментальной природы реальности и ведет за собой через бесконечное пространство и время – от микрокосма субатомных частиц к макрокосму Вселенной.
Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.
В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.