На конце любого нервного волокна располагаются специализированные клетки; их открыли лишь недавно. Можно предположить, смело заявляет Фолькман, что эти клетки выполняют «те же функции, что и клетки головного мозга». Все вместе они образуют «корневой мозг» растения, спрятанный глубоко в земле. Отдельные клетки этого «мозга» связаны друг с другом «растительными синапсами» - подобно тому, как соединяются нейроны головного мозга человека или любого другого животного.
«Теперь мы знаем, что растения - особенно под землей - активно общаются друг с другом», - поясняет в интервью немецкому журналу «Р. М.» Франтишек Балушка из Института клеточной и молекулярной биологии при Боннском университете. Они общаются при помощи медиаторов, растворенных в воде. Какой, интересно, видится им действительность?
Еще одни «Братья меньшие»
Полые стебли растений поразительно схожи по своему строению с позвоночником человека, а сосуды, по которым внутри растительной ткани перекачивается вода, - с нашей кровеносной системой. Хлоропласты растений, поглощающие солнечный свет, напоминают палочки - фоторецепторы сетчатки глаза позвоночных животных. Зеленый пигмент растений, хлорофилл, схож с пигментом крови - гемоглобином. Есть у растений, как у животных, и своя врожденная иммунная система.
Схожи у растений и животных также системы связи между отдельными частями организма. Если, например, поднести горящую спичку к листку мимозы, тот отдернется от огня, когда до спички будет еще два десятка сантиметров. Электрические сигналы молниеносно распространяются в тканях растения, подобно сигналам в нервных волокнах животного. Даже скорость передачи сигналов - до 20 сантиметров в секунду - вполне сопоставима: именно с такой скоростью распространяются сигналы в нервных волокнах низших животных.
...Пока многие механизмы процессов, протекающих в тканях растений, по-прежнему непонятны ученым. Зато они едины в одном: в биологии грядут разительные перемены. Возможно, нас ждет смена парадигмы в наших воззрениях на природу. Мы начинаем относиться к растениям, как к существам особого рода, так не похожим на нас и таким удивительным. А ведь именно из растений в основном - на 98 процентов! - и состоит биомасса нашей планеты.
И все же коренной вопрос остается нерешенным. Может ли существовать восприятие без органов чувств, а сознание - без сложно устроенного головного мозга? Когда одни исследователи заводят речь о «корневом мозге» или «растительных синапсах», другие по праву опасаются, что эта игра словами подрывает сами устои биологической науки, поскольку понятия, бытующие в нейробиологии животных, некритично переносятся на характерные особенности растений. К тому же одних только старых понятий отнюдь не достаточно, чтобы описать новые открытия. «Мы нуждаемся в новых междисциплинарных исследованиях, - все чаще слышится на научных форумах. - Специалисты по клеточной биологии, физиологи и экологи должны тесно сотрудничать друг с другом». Только это позволит наконец разгадать секреты разума растений.
Возьмем ли Моцарта на грядку?
Как быть с памятными заявлениями о том, что растения не любят рок-музыку, зато быстрее растут под мелодии Моцарта или Баха? Тут нужна осторожность. Растения реагируют на любого рода механические раздражения. Наши музыка и речь вызывают возбуждение мембран их клеток. Так что растения воспринимают частоту раздающихся звуков, но не слушают музыку, например сонату Баха, в том смысле, какой мы этому придаем. «Может статься, что именно соната Баха содержит звуки той частоты, которая стимулирует рост растений. Впрочем, многие ученые не желают слышать об этом», - говорит Франтишек Балушка.
Кстати, долгое время серьезные ученые отказывались верить в то, что растение лучше растет, если его любовно поглаживать. «Теперь мы знаем, что прикосновения активизируют некоторые гены растений, - подчеркивает Дитер Фолькман, - так называемые Touch-Genes, контактные гены». При их активизации меняется скорость роста растений, например, стебли становятся толще. И тут уже нет никакой эзотерики.
Единая теория создана?
Поиски Единой теории считают одной из главных целей современной физики. Напомним, что такая теория не только описывает все известные фундаментальные взаимодействия, но и объединяет две глобальные теории - квантовую механику и общую теорию относительности. В современном виде эта задача возникла в работах Эйнштейна, пытавшегося объединить гравитацию и электромагнетизм, теорию относительности и квантовую механику. Но усилия Эйнштейна, как известно, не увенчались успехом. В ХХ веке было предпринято множество попыток найти Единую теорию, но ни одна из них не смогла пройти экспериментальную проверку.
Первым шагом на пути к объяснению четырех фундаментальных взаимодействий стало объединение электромагнитного и слабого из них в теории электрослабого взаимодействия, созданной в 1967 году С. Вайнбергом, Ш. Глэшоу и А. Саламом. В 1973 году была предложена теория сильного взаимодействия, в рамках которой удалось объединить все типы взаимодействий, кроме гравитационного. Недостающим звеном остается построение теории квантовой гравитации на основе квантовой механики и общей теории относительности.