Знание-сила, 2001 № 11 (893) - [15]

Шрифт
Интервал


Десять лет назад спутник "СОВЕ" исследовал реликтовое излучение Вселенной и составил карту «подлинных» перепадов ее температуры (см. внизу)


Самое интересное в истории Алана Гута состоит в том, что он не был специалистом в космологии, а специализировался в физике элементарных частиц, и в то время был занят поисками решения другого парадокса из своей области, так называемого парадокса магнитных монополей – гипотетических частиц, имеющих только один магнитный полюс. Теория говорила, что такие монополи должны иметь огромную (для частицы) массу и во Вселенной их должно быть не меньше, чем протонов или нейтронов. Не заметить их казалось невозможным, и тем не менее никто их почему-то не обнаруживал.

Размышляя над только что прослушанной лекцией Дикке, Гут вдруг сообразил, что все трудности могут быть устранены одним и тем же способом. Действительно, стоит допустить, что на самой заре жизни Вселенная пережила период быстрого и громадного, как говорят – экспоненциального расширения («инфляции»), и эти трудности исчезнут. За счет такого дополнительного расширения границы Вселенной отодвинутся так далеко, что в наблюдаемой ее части останется крайне мало монополей. С другой стороны, это расширение «растянет» Вселенную, как надувание растягивает воздушный шарик. Поверхность шарика при большом раздувании становится (на небольших участках) практически плоской, и пространство Вселенной после инфляции должно стать (в небольших объемах, например в объеме видимой нами части Вселенной) тоже практически «плоским», причем независимо от начальных условий, не требуя никакой их «тонкой подгонки».

Наконец, если Вселенная за время инфляции чудовищно увеличилась в размерах, значит, то, что мы видим сейчас большим, например видимая часть Вселенной, до инфляции было очень и очень маленьким. Все ее участки вполне могли тогда же обменяться энергией и прийти в тепловое равновесие; поэтому ничего удивительного, что в сегодняшнем остаточном излучении точки, находящиеся даже на противоположных краях небосвода, имеют одинаковую температуру.

Единственную еще не решенную трудность представлял вопрос об образовании галактик, точнее, их зародышей в ранней Вселенной. Чтобы ответить и на этот вопрос, Гут предположил, что в какой-то момент инфляция прекратилась так же резко, как началась. Скорость расширения Вселенной резко упала, и, подобно тому, что происходит при всяком резком торможении, выделилась огромная энергия, которая тотчас, по закону эквивалентности массы и энергии, превратилась в вешество. Но такое превращение энергии в вешество и обратно управляется законами квантовой физики, а среди них есть известное соотношение неопределенностей Гейзенберга, которое, грубо говоря, означает, что возникшая при окончании инфляции энергия не во всех точках постинфляционной Вселенной была одинакова, в ней были микроскопические, как говорят – квантовые, флуктуации плотности! Где она была чуть больше, плотность возникшего вещества тоже оказалась чуть больше, и наоборот. Иными словами, квантовые флуктуации энергии привели к микроскопическим неоднородностям вещества. Это и были зародыши будущих галактик.

Возникает вопрос: почему последующее (постинфляционное) расширение Вселенной не разорвало эти зародыши? Ответ поразительный: темпы этого (уже равномерного, а не экспоненциального, как при инфляции) расширения были слишком малы, чтобы превозмочь стягивающее действие гравитации. Кто-то проделал компьютерное моделирование этого процесса и показал, что гравитация в условиях хотя бы ничтожного превышения плотности над средней начинает очень быстро притягивать к этому уплотнению окружающее вещество, и это ведет к очень быстрому росту зародыша.

Теория инфляции предсказывает кое-что еще относительно зародышей. Когда эти сгусточки возникают, они «расталкивают» окружающее вещество. От этого толчка возникает волна, которая затем бежит по всему объему, ограниченному «горизонтом» волны (уже не световой, а механической, звуковой). Волны, порожденные разными флуктуациями, пронизывают весь объемчик, создавая в нем систему сгущений и разрежений вешества. Вселенная «звучит» – она поет песнь своего творения. Это продолжается миллионы лет. В момент расцепления света и вешества освобожденный свет (будущее остаточное излучение) рассеивается на этих узлах и пучностях. Там, где вещество чуть гуше, свет должен преодолевать большее его притяжение – он теряет энергию и выходит чуть более холодным.

Расчеты показывают, что карта остаточного излучения должна поэтому быть испещрена пятнами более низкой температуры размером в один угловой градус и меньше. Карта Пензиаса и Вильсона их не могла показать, потому что ее разрешение было слишком малым. Приборы спутника СОВЕ были рассчитаны специально на то, чтобы эти пятна найти или не найти (что означало бы крах инфляционной теории). И они их нашли! Именно эти следы галактических «зародышей», выросших за 300 тысяч лет из постинфляционных квантовых флуктуаций, Смут и назвал «моршинами времени». Выходит, картина рождения Вселенной «по Гуту» оказалась правильной? А инфляционная теория Биг Бэнга (в отличие от прежней, «стандартной») – абсолютно верной?


Еще от автора Журнал «Знание-сила»
Знание-сила, 2000 № 08 (878)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2000 № 02 (872)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 03 (885)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 1999 № 01 (859)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2000 № 04 (874)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 02-03 (860,861)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Рекомендуем почитать
Алексей Васильевич Шубников (1887—1970)

Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Знание-сила, 2006 № 12 (954)

Ежемесячный научно-популярный и научно-художественный журнал.


Занимательное дождеведение: дождь в истории, науке и искусстве

«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.