Знание-сила, 2000 № 12 (882) - [7]

Шрифт
Интервал

Сто лет спустя Гаусс был бы рад рассуждать о науке столь же беспечно и уверенно. Но увы – это не получалось. Удачная попытка построить правильный 17-угольник с помощью комплексных чисел привела к удивительному открытию: НЕВОЗМОЖНО построить правильный 7- или 9-угольник! Значит, в математике есть свои неразрешимые проблемы – вроде вечного двигателя в физике! Доказать их неразрешимость удается, лишь вводя строгие определения удачно выбранных понятий. Таковы в физике сила, энергия и импульс, а в математике – поле и кольцо, группа и векторное пространство.

После осмысления этих вещей выполнимость или невыполнимость многих построений циркулем и линейкой стала простым следствием из делимости размерностей числовых полей; неразрешимость в радикалах уравнений пятой степени следует из отсутствия нормальных подгрупп в группе перестановок длины 5. Напротив – недоказуемость евклидова постулата о параллельных прямых не потребовала новых понятий или определений. Зато понадобились два примера необычно изогнутых поверхностей: сфера и псевдосфера.

Таким путем Гаусс и его наследники (Галуа, Риман, Куммер, Кляйн) открыли с XIX веке своеобразный закон сохранения и превращения научных понятий и законов в новые научные проблемы – или наоборот. Тот и другой процессы требуют высочайшей активности ученых людей. Так, Архимед пытался понять законы движения планет с помощью численных экспериментов и механических моделей. В этом деле великий грек потерпел неудачу: не владея позиционной записью чисел, он тратил слишком много времени на довольно простые расчеты. В XVI веке десятичная запись целых и дробных чисел стала достоянием всех просвещенных европейцев: сразу после этого Кеплер успешно решил астрономическую проблему, над которой бился Архимед.

Тогда же нечаянное техническое чудо – подзорная труба -произвело революцию в наблюдательной астрономии. Галилей открыл спутники Юпитера и заметил вращение Солнца вокруг его оси; Гюйгенс обнаружил кольцо Сатурна и построил точные часы с маятником; и так далее. Очутившись в центре такой революции и активно продолжая ее, Ньютон не имел ни времени, ни охоты задуматься: каковы движущие силы этого стихийного процесса и что делать ученым людям, если он начнет затухать?

Полвека спустя такое затухание стало очевидным фактом и вызвало две разные инстинктивные реакции ученого сообщества. Одни удальцы начали ЭКСПОРТ плодов «механико-математической революции» в сопредельные области естествознания, прежде всего в химию, где азартная охота за новыми элементами переросла в изучение атомов и молекул. Другие энтузиасты увлеклись научным образованием немалого множества просвещенных европейцев. Пусть ВСЕ поймут величие открытий Галилея и Ньютона! Тогда многие захотят им подражать – и, авось, у некоторых счастливцев получится что-нибудь стоящее…



Получилось много всего: от аэростата до гильотины, от паровой машины до государственного культа Разума, от египтологии до электромотора. Все это Гаусс наблюдал своими глазами: многое он испытал на своей шкуре. И решил для себя: в экспорте научной революции он участвует, но в массовом просвещении любителей-полузнаек – нет! Ибо учитель не вправе оставить пробужденных им учеников на произвол судьбы: он должен указать им не только пути, ведущие к открытиям, но и способы избегать дурного воплощения этих открытий. Таких способов Гаусс не нашел. Оттого многие юноши, заразившись от геттингенского мудреца любовью к математике, уезжали доучиваться и работать в Берлин или Париж – туда, где нечаянно сложились тесные ученые содружества.

Их организаторы – Фурье. Якоби, Дирихле – заметно уступали Гауссу и Ньютону калибром своих научных достижений. Но благодаря душевной открытости они стали властителями дум очередного поколения европейских ученых. Благодаря их усилиям обновленное математическое сообщество в XIX веке не отставало от великих успехов физики и химии. Вспомним такие пары научных ровесников, как Фарадей и Риман, Максвелл и Кантор, Кельвин и Вейерштрасе… К концу века на плечах этих гигантов выросли Пуанкаре и Гильберт.

Их обоих обожгла внезапная война 1870 года. Но Гильберт рос в Кенигсберге – столице победившей Пруссии, а Пуанкаре рос в Нанси – на французской земле, захваченной пруссаками. Понятно, что Пуанкаре всю жизнь чурался политики – подобно Ньютону, выросшему в разрухе английской революции, или Гауссу, разоренному войнами Наполеона. Гильберт тоже не увлекся политикой: его увлекла наука. Но для Гильберта математика не стала наркотиком, заслонявшим неприглядную реальность. Он предложил немцам и прочим европейцам иной путь интеллектуальных трудов и побед – не связанных с массовым кровопролитием, но доставляющих не меньшую радость, чем победа на поле боя. Характерно, что наставником Гильберта в педагогической работе стал блестящий немей Кляйн, недавно побежденный и сломленный в честном бою гениальным французом Пуанкаре.

Оба молодых человека одновременно увлеклись прекрасной дамой – теорией функций комплексного переменного. Среди таких функций обнаружились особенно красивые – связанные с геометрией Евклида или Лобачевского общей группой симметрий. Как велико множество этих красавиц? Кто первый найдет все такие функции? Началась изнурительная гонка к желанной цели:


Еще от автора Журнал «Знание-сила»
Знание-сила, 2000 № 08 (878)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 03 (885)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 1999 № 02-03 (860,861)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 11 (893)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 1999 № 01 (859)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2000 № 02 (872)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Рекомендуем почитать
Складки на ткани пространства-времени

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы.


Эмбрионы в глубинах времени

Эта книга предназначена для людей, обладающих общим знанием биологии и интересом к ископаемым остаткам и эволюции. Примечания и ссылки в конце книги могут помочь разъяснить и уточнить разнообразные вопросы, к которым я здесь обращаюсь. Я прошу, чтобы мне простили несколько случайный характер упоминаемых ссылок, поскольку некоторые из затронутых здесь тем очень обширны, и им сопутствует долгая история исследований и плодотворных размышлений.


Технологии против человека

Технологии захватывают мир, и грани между естественным и рукотворным становятся все тоньше. Возможно, через пару десятилетий мы сможем искать информацию в интернете, лишь подумав об этом, – и жить многие сотни лет, искусственно обновляя своё тело. А если так случится – то что будет с человечеством? Что, если технологии избавят нас от необходимости работать, от старения и болезней? Всемирно признанный футуролог Герд Леонгард размышляет, как изменится мир вокруг нас и мы сами. В основу этой книги легло множество фактов и исследований, с помощью которых автор предсказывает будущее человечества.


Профиль равновесия

В природе все взаимосвязано. Деятельность человека меняет ход и направление естественных процессов. Она может быть созидательной, способствующей обогащению природы, а может и вести к разрушению биосферы, к загрязнению окружающей среды. Главная тема книги — мысль о нашей ответственности перед потомками за природу, о возможностях и обязанностях каждого участвовать в сохранении и разумном использовании богатств Земли.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


История астрономии. Великие открытия с древности до Средневековья

Книга авторитетного британского ученого Джона Дрейера посвящена истории астрономии с древнейших времен до XVII века. Автор прослеживает эволюцию представлений об устройстве Вселенной, начиная с воззрений древних египтян, вавилонян и греков, освещает космологические теории Фалеса, Анаксимандра, Парменида и других греческих натурфилософов, знакомит с учением пифагорейцев и идеями Платона. Дрейер подробно описывает теорию концентрических планетных сфер Евдокса и Калиппа и геоцентрическую систему мироздания Птолемея.