Знание-сила, 1999 № 04 (862) - [27]
Работать над созданием разностной машины Бэббидж начал вскоре после 1812 года. Прежде всего, у него возникло множество, как сейчас бы сказали, технологических проблем. Приходилось изобретать не только узлы и механизмы, но и способы их изготовления с достаточной точностью. Тем не менее при всех сложностях Бэббидж сумел к 1822 году построить действующую модель, на которой он рассчитал, в частности, таблицу квадратов. В том же году он обратился с письмом к президенту Королевского общества известному химику Гэмфри Дэви с предложением построить значительно большую машину, позволяющую вести расчет навигационных, астрономических и тригонометрических таблиц с достаточной точностью. Он предвидел масштабы необходимых затрат, но, как выяснилось позднее, все же ошибся как минимум на порядок. В 1823 году при содействии Дэви, который подтвердил осуществимость проекта, правительство Англии выделило первые 1500 фунтов с обязательством со стороны Бэббиджа построить машину затри года. Через десять лет машина все еще не была построена, хотя истрачено было к тому времени 17 тысяч фунтов правительственных денег и 13 тысяч собственных денег Бэббиджа – огромное состояние по тем временам!
Тем не менее история, возможно, имела бы более счастливый конец для разностной машины, если бы не одно обстоятельство, из-за которого имя Бэббиджа и осталось навсегда в истории науки. Около 1833 года ему пришла в голову идея усовершенствованной машины – «аналитической», после чего он разностную машину практически похоронил. Ибо возможности новой машины значительно перекрывали возможности разностной. И это была первая в истории идея ЦВМ.
Догадываетесь, чем калькулятор отличается от компьютера? Первый раоотает, подобно музыкальному автомату, по раз и навсегда заданной программе. Программ может быть и несколько, но для каждой из них требуется менять конструкцию устройства – в современных калькуляторах и микроконтроллерах менять содержимое ПЗУ. А идея «аналитической машины» состояла в том, чтобы использовать единую конструкцию для выполнения многих – теоретически любых – программ. Это и есть идея ЦВМ – во вполне современном виде. И, надо сказать, идея эта вовсе не тривиальная. Так, самолет или связь на расстоянии в некотором смысле изобретать было не надо – идея сама просто напрашивается, нужно только придумать, как ее осуществить. А вот, скажем, железная дорога – ее еще надо было выдумать. Так же и компьютер – как компьютер, а не как калькулятор.
Аналитическая машина Бэббиджа содержала все узлы сегодняшнего компьютера: ОЗУ на регистрах из колес (Бэббидж назвал его «store» – склад), АЛ У – арифметико-логическое устройство («mill» – мельница), устройство управления и устройства ввода-вывода, последних было даже целых три: печать одной или двух копий (!), изготовление стереотипного отпечатка и пробивка на перфокартах. Перфокарты (изобретение отнюдь не Бэббиджа) служили и для ввода программы и данных в машину ОЗУ имело емкость 1000 чисел по 50 десятичных знаков (то есть около 20 килобайт), что более чем прилично – для сравнения укажем: ЗУ одной из первых ЭВМ «Эниак» (1945 г.) имело объем всего 20 десяти разрядных чисел, а знаменитый Aplle II (1980 г.) поступал в продажу чаще всего с 48 килобайт общей памяти – для программ и данных. АЛУ имело, как мы бы сейчас сказали, аппаратную поддержку всех четырех действий арифметики. Можете себе представить – на дворе 1834 год! Еще не изобретены фотография и электрические генераторы, и в помине нет телефона и радио, только-только начали прокладывать первые железные дороги и телеграфные линии. Радиоактивность, которая повлечет за собой всю цепочку событий, приведших в том числе и к достижениям современной технологии полупроводников, откроют только в 1890-х годах. На морях еще безраздельно господствует парус, а в передвижении по суше – друг человека, лошадь. А тут – ЦВМ! И ведь конструкцией дело не ограничилось.
В 1991 году к 200-летию Бэббиджа Научный музей в Кенсингтоне, Англия. изготовил разностную машину по собственноручным чертежам Бэббиджа. В них были обнаружены лишь две ошибки.
Туг на сцену выходит другой персонаж, а именно – Ада Августа Лавлейс, дочь Байрона и первая в истории программистка. Рискуя утомить читателя, все же остановлюсь на нескольких штрихах к биографии уникальной леди. Хотя она прожила короткую жизнь, умерев в 1852 году в возрасте 37 лет, эта жизнь сложилась довольно счастливо, не в пример жизни ее матери, вынужденной расстаться со знаменитым, но неудобным мужем, еше когда Аде не исполнилось и месяца. Ада с малолетства привлекала внимание современников нетривиальным сочетанием черт характера – будучи вполне миловидной и женственной, в то же время она поражала своим быстрым математическим умом. Кроме того, в отличие от Бэббиджа, на дух не переносившего никакой лирики. Ада прилично играла на нескольких инструментах и владела несколькими языками. Окружающие поощряли математические занятия Ады, в том числе и ее богатый муж, граф Лавлейс, что само по себе вешь не очень обычная для тех времен.
В 1842 году итальянец Менабреа (впоследствии премьер-министр Италии!) опубликовал описание аналитической машины Бэббиджа на итальянском языке. Сам Бэббидж не был расположен к популяризации своих идей – еще одна черта неутомимого характера, попросту ему было жалко времени. Поэтому он активно приветствовал появление английского перевода работы Менабреа, сделанного Адой Лавлейс, с которой к тому времени уже был прекрасно знаком и проводил некоторые совместные работы. Пожалуй, Ада наиболее глубоко понимала сущность и перспективы идей Бэббиджа и потому последний предложил ей сделать свои комментарии к переводу. Вот эти-то комментарии, явившиеся единственной печатной работой Ады Георгиевны, значительно превысившие как по объему, так и по значению сам оригинал, и вошли в историю как пример первого описания ЦВМ и инструкций по программированию к ней.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.