Знание-сила, 1999 № 01 (859) - [5]

Шрифт
Интервал

Конечно, такой успех не дается даром: приходится изобретать новые понятия, отражающие суть дела. Ньютон ввел три таких понятия: флюксию (производную), флюенту (интеграл) и степенной ряд. Их хватило для создания математического анализа и первой научной модели физического мира, включающей механику и астрономию. laycc тоже ввел три новых понятия: векторное пространство, поле и кольцо. Из них выросла новая алгебра, подчинившая себе греческую арифметику и созданную Ньютоном теорию числовых функций. Оставалось еще подчинить алгебре логику, созданную Аристотелем: тогда можно будет с помощью расчетов доказывать выводимость или невыводимость любых научных утверждении из данного набора аксиом! Например, выводится ли теорема Ферма из аксиом арифметики, или постулат Евклида о параллельных прямых-из прочих аксиом планиметрии?

Эту дерзкую мечту Гаусс не успел осуществить – хотя продвинулся он далеко и угадал возможность существования экзотических (некоммутативных) алгебр. Построить первую неевклидову геометрию сумел только дерзкий россиянин Николай Лобачевский, а первую некоммутативную алгебру (Теорию Групп) – француз Эварист Галуа. И лишь много позже смерти Гаусса – в 1872 году – юный немец Феликс Кляйн догадался, что разнообразие возможных геометрий можно привести во взаимно-однозначное соответствие с разнообразием возможных алгебр. Попросту говоря, всякая геометрия определяется своей группой симметрий – тогда как общая алгебра изучает все возможные группы и их свойства.

Но такое понимание геометрии и алгебры пришло гораздо позже, а штурм теоремы Ферма возобновился еще при жизни Iaycca. Сам он пренебрег теоремой Ферма из принципа: не царское это дело – решать отдельные задачи, которые не вписываются в яркую научную теорию! Но ученики Гаусса, вооруженные его новой алгеброй и классическим анализом Ньютона и Эйлера, рассуждали иначе. Сначала Петер Дирихле доказал теорему Ферма для степени 7, используя кольцо целых комплексных чисел, порожденных корнями этой степени из единицы. Потом Эрнст Куммер распространил метод Дирихле на ВСЕ простые степени (!) – так ему сгоряча показалось, и он восторжествовал. Но вскоре пришло отрезвление: доказательство проходит безупречно, только если всякий элемент кольца однозначно разлагается на простые множители! Для обычных целых чисел этот факт был известен еше Евклиду, но только Гаусс дал его строгое доказательство- А как обстоит делос целыми комплексными числами?

Согласно «принципу наибольшей пакости», там может и ДОЛЖНО встретиться неоднозначное разложение на множители! Как только Куммер научился вычислять степень неоднозначности методами математического анализа, он обнаружил эту пакость в кольце для степени 23. Гаусс не успел узнать о таком варианте экзотической коммутативной алгебры, но ученики Гаусса вырастили на месте очередной пакости новую красивую Теорию Идеалов. Правда, решению проблемы Ферма это не особенно помогло: только стала яснее ее природная сложность.

На протяжении XIX века этот древний идол требовал от своих почитателей все новых жертв в форме новых сложных теорий. Не удивительно, что к началу XX века верующие пришли в уныние и взбунтовались, отвергая былой кумир. Слово «ферматист» стало бранным прозвищем среди профессиональных математиков. И хотя за полное доказательство теоремы Ферма была назначена немалая премия, но ее соискателями выступали в основном самоуверенные невежды. Сильнейшие математики той поры – Пуанкаре и Гильберт – демонстративно сторонились этой темы. В 1900 году Гильберт не включил теорему Ферма в перечень двадцати трех важнейших проблем, стоящих перед математикой XX века. Правда, он включил в их ряд общую проблему разрешимости диофантовых уравнений. Намек был ясен: следуйте примеру Гаусса и Галуа, создавайте общие теории новых математических объектов! Тоша в один прекрасный (но не предсказуемый заранее) день старая заноза выпадет сама собой.

Именно так действовал великий романтик Анри Пуанкаре. Пренебрегая многими «вечными» проблемами, он всю жизнь изучал СИММЕТРИИ тех или иных объектов математики или физики: то функций комплексного переменного, то траекторий движения небесных тел, то алгебраических кривых или гладких многообразий (это многомерные обобщения кривых линий). Мотив его действий был прост: если два разных объекта обладают сходными симметриями – значит, между ними возможно внутреннее родство, которое мы пока не в силах постичь! Например, каждая из двумерных геометрий (Евклида, Лобачевского или Римана) имеет свою фуппу симметрий, которая действует на плоскости. Но точки плоскости суть комплексные числа: таким путем действие любой геометрической группы переносится в безбрежный мир комплексных функций. Можно и нужно изучать самые симметричные из этих функций: АВТОМОРФНЫЕ (которые подвластны группе Евклида) и МОДУЛЯРНЫЕ (которые подчиняются группе Лобачевского)!

А еше на плоскости есть эллиптические кривые. Они никак не связаны с эллипсом, но задаются уравнениями вида Y2 = АХ3 + ВХ2 + СХ и потому пересекаются с любой прямой в трех точках. Этот факт позволяет ввести среди точек эллиптической кривой умножение – превратить ее в группу. Алгебраическое устройство этой группы отражает геометрические свойства кривой; может быть, она однозначно определена своей группой? Этот вопрос стоит изучить, поскольку для некоторых кривых интересующая нас группа оказывается модулярной, то есть она связана с геометрией Лобачевского…


Еще от автора Журнал «Знание-сила»
Знание-сила, 2000 № 08 (878)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 02-03 (860,861)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2000 № 02 (872)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 03 (885)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2000 № 04 (874)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 11 (893)

Ежемесячный научно-популярный и научно-художественный журнал.


Рекомендуем почитать
Погода интересует всех

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.


Волк по имени Ромео. Как дикий зверь покорил сердца целого города

Книга Ника Дженса, фотографа дикой природы на Аляске, – это невероятная и во многом философская история об особенном черном волке, проявившем небывалую теплоту и привязанность к людям. Ромео, дикий зверь, выбравший своим домом окрестности города Джуно, первоначально вызвал у его жителей бурю противоречий. Однако со временем, видя, как волк играет с домашними собаками, выходит поздороваться со знакомыми ему людьми или провожает их на прогулку, они приняли и полюбили его. Проведя шесть лет по соседству с жителями Джуно, Ромео стал неофициальным символом города.


Суд идет. О судебных процессах прошлого: от античности до новейшей истории

Суд – это место, где должна вершиться Справедливость. «Пусть погибнет мир, но восторжествует Правосудие!» – говорили древние. Однако в истории различных обществ мы встречаем примеры разных судебных процессов: на одних подсудимые приносятся с жертву сиюминутной политической целесообразности, на других суд оказывается не в состоянии разобраться в криминалистических хитросплетениях. Среди персонажей этой книги в разных главах вы встретите как знаменитых людей – Сократа, Жанну д’Арк, Петра I, так и простых смертных – русских крестьян, английских моряков, итальянских иммигрантов.


Перо и маска

«Настоящая книга представляет собою сборник новелл о литературных выдумках и мистификациях, объединенных здесь впервые под понятиями Пера и Маски. В большинстве они неизвестны широкому читателю, хотя многие из них и оставили яркий след в истории, необычайны по форме и фантастичны по содержанию».


Полчаса музыки. Как понять и полюбить классику

Cлушать музыку – это самое интересное, что есть на свете. Вы убедитесь в этом, читая книгу музыкального журналиста и популярного лектора Ляли Кандауровой. Вместо скучного и сухого перечисления фактов перед вами настоящий абонемент на концерт: автор рассказывает о 600-летней истории музыки так, что незнакомые произведения становятся близкими, а знакомые – приносят еще больше удовольствия.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.