Знание-сила, 1999 № 01 (859) - [4]

Шрифт
Интервал

В 1636 году в руки молодого юриста из Тулузы попала книга Диофанта, только что переведенная на латынь с греческого оригинала, случайно уцелевшего в каком- то византийском архиве и привезенного в Италию кем-то из беглецов-ромеев в пору турецкого разорения. Читая изящное рассуждение об уравнении Пифагора, Ферма задумался: можно ли найти такое его решение, которое состоит из трех чисел- квадратов? Малых чисел такого сорта нет: это легко проверить перебором. А как насчет больших решений? Не имея компьютера, Ферма не мог поставить численный эксперимент. Но он заметил, что по каждому «большому» решению уравнения X4 + Y4 =Z4 можно построить меньшее его решение. Значит, сумма четвертых степеней двух целых чисел никогда не равна той же степени третьего числа! А как насчет суммы двух кубов?

Вдохновленный успехом для степени 4, Ферма попытался модифицировать «метод спуска» для степени 3 – и это ему удалось. Оказалось, что невозможно составить два малых куба из тех единичных кубиков, на которые рассыпался большой куб с целой длиной ребра. Торжествующий Ферма сделал краткую запись на полях книги Диофанта и послал в Париж письмо с подробным сообщением о своем открытии. Но ответа он не получил – хотя обычно столичные математики быстро реагировапи на очередной успех их одинокого коллеги-соперника в Тулузе. В чем тут дело?

Очень просто: к середине XVII века арифметика вышла из моды. Большие успехи итальянских алгебраистов XVI века (когда были решены уравнения-многочлены степеней 3 и 4) не стали началом общенаучной революции, ибо они не позволили решить новые яркие задачи в сопредельных областях науки. Вот если бы Кеплеру удалось угадать орбиты планет с помощью чистой арифметики… Но увы – для этого потребовался математический анализ. Значит, его и надо развивать – вплоть до полного торжества математических методов в естествознании! Но анализ вырастает из геометрии; арифметика же остается полем забав для досужих юристов и прочих любителей вечной науки о числах и фигурах.

Итак, арифметические успехи Ферма оказались несвоевременны и остались неоцененными. Он не был этим огорчен: для славы математика довольно впервые открывшихся ему фактов дифференциального исчисления, аналитической геометрии и теории вероятностей. Все эти открытия Ферма сразу вошли в золотой фонд новой европейской науки, меж тем как теория чисел отошла на задний план еще на сто лет – пока ее не возродил Эйлер.

Этот «король математиков» XVIII века был чемпионом во всех применениях анализа, но не пренебрегал и арифметикой, поскольку новые методы анализа приводили к неожиданным фактам о числах. Кто бы мог подумать, что бесконечная сумма обратных квадратов (1 + 1/4 + 1/9 + 1/16+…) равна π²/6? Кто из эллинов мог предвидеть, что похожие ряды позволят доказать иррациональность числа я?

Такие успехи заставили Эйлера внимательно перечитать сохранившиеся рукописи Ферма (благо, сын великого француза успел их издать). Правда, доказательство «большой теоремы» для степени 3 не сохранилось; но Эйлер легко восстановил его по одному лишь указанию на «метод спуска», и сразу постарался перенести этот метод на следующую простую степень – 5.

Не тут-то было! В рассуждениях Эйлера появились комплексные числа, которые Ферма ухитрился не заметить (таков обычный удел первооткрывателей). Но разложение целых комплексных чисел на множители – дело тонкое. Даже Эйлер не разобрался в нем до конца и отложил «проблему Ферма» в сторону, торопясь завершить свой главный труд – учебник «Основы анализа», который должен был помочь каждому талантливому юноше встать вровень с Лейбницем и Эйлером. Издание учебника завершилось в Петербурге в 1770 году. Но к теореме Ферма Эйлер уже не возвращался, будучи уверен: все, чего коснулись его руки и разум, не будет забыто новой ученой молодежью.

Так и вышло: преемником Эйлера в теории чисел стал француз Адриен Лежандр. В конце XVIII века он завершил доказательство теоремы Ферма для степени 5 – и хотя потерпел неудачу для больших простых степеней, но составил очередной учебник теории чисел. Пусть его юные читатели превзойдут автора так же, как читатели «Математических принципов натурфилософии» превзошли великого Ньютона! Лежандр был не чета Ньютону или Эйлеру, но среди его читателей оказались два гения: Карл Гаусс и Эварист Галуа.

Столь высокой кучности гениев способствовала Французская революция, провозгласившая государственный культ Разума. После этого каждый талантливый ученый ощутил себя Колумбом или Александром Македонским, способным открыть или покорить новый мир. Многим это удавалось; оттого в XIX веке научно- технический прогресс сделался главным движителем эволюции человечества, и все разумные правители (начиная с Наполеона) сознавали это.

Гaycc по характеру был близок к Колумбу. Но он (как и Ньютон) не умел пленять воображение правителей или студентов красивыми речами, и потому ограничил свои амбиции сферой научных понятий. Здесь он мог все, чего хотел. Например, древняя задача о трисекции угла почему-то не решается с помощью циркуля и линейки. С помощью комплексных чисел, изображающих точки плоскости, laycc переводит эту задачу на язык алгебры – и получает общую теорию выполнимости тех или иных геометрических построений. Так одновременно появились строгое доказательство невозможности построения циркулем и линейкой правильного 7- или 9- угольника и такой способ построения правильного 17-угольника, о котором не мечтали самые мудрые геометры Эллады.


Еще от автора Журнал «Знание-сила»
Знание-сила, 2000 № 08 (878)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2000 № 02 (872)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 03 (885)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2000 № 04 (874)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 1999 № 02-03 (860,861)

Ежемесячный научно-популярный и научно-художественный журнал для молодежи.


Знание-сила, 2001 № 11 (893)

Ежемесячный научно-популярный и научно-художественный журнал.


Рекомендуем почитать
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.