Живой учебник геометрии - [6]

Шрифт
Интервал

О к р у ж н о с т ь е с т ь к р и в а я л и н и я, в с е т о ч к и к о т о р о й о д и н а к о в о у д а л е н ы о т о д н о й

т о ч к и, н а з ы в а е м о й ц е н т р о м.

Прямая, соединяющая две точки окружности через центр, называется д и а м е т р о м.

Всякая часть окружности называется ее д у г о ю (черт. 27).


Плоская фигура, ограниченная окружностью, называется к р у г о м.

Повторительные вопросы

Что такое окружность? Центр? Радиус? Дуга? – Покажите все это на чертеже. – Все ли радиусы одной окружности равны между собою? – Что больше: диаметр или радиус? Во сколько раз?


Применения

3. Гудок завода слышен на 4 км. Начертить в масштабе 1 км в 1 см границу местности, где слышен гудок этого завода.

Р е ш е н и е. Вокруг точки, обозначающей положение завода, начертить окружность радиусом 4 см.

4. Радиус круга 100 см. Некоторая точка удалена от центра на 40 см. Лежит ли она внутри круга или вне его? Каково ближайшее расстояние от этой точки до окружности?

Р е ш е н и е. Точка лежит внутри круга. Ближайшее расстояние ее от окружности надо считать вдоль диаметра, проведенного через эту точку; оно равно 60 см. Дальнейшее расстояние (вдоль того же диаметра) – 140 см.

§ 11. Пересечение окружности с прямою и с другою окружностью

Две прямые линии могут пересечься друг с другом только в одной точке; более одной общей точки две разные прямые иметь не могут, – иначе они сливаются одна с другой. В скольких же точках могут пересекаться друг с другом прямая и окружность?

Начертите одну или несколько окружностей и пересеките их прямыми линиями (черт. 28). Вы убедитесь, что прямая и окружность могут встречаться или в двух точках или в одной. Более двух общих точек прямая и окружность иметь не могут.

Подобным же испытанием мы найдем, что и две окружности не могут иметь более двух общих точек: они встречаются или в одной или в двух общих точках (черт. 29). Итак, запомним:

П р я м а я и о к р у ж н о с т ь и л и д в е о к р у ж н о с т и н е м о г у т и м е т ь б о л е е д в у х о б щ и х т о ч е к.



Применения

5. В городе два завода в 8 км друг от друга. Гудок одного слышен на 5 км, другого – на 6 км. Изобразите, в выбранном вами масштабе, границы местности, где слышны гудки обоих заводов.

Р е ш е н и е. Выберем масштаб 2 км в 1 см. Взаимное удаление заводов изобразится тогда отрезком в 4 см. Наметив на чертеже две точки в расстоянии 4 см одна от другой, проведем вокруг одной из них (как около центра) окружность радиусом 21/2 см, а вокруг другой – радиусом 3 см. Окружности пересекутся, и общая часть обоих кругов будет изображать местность, где слышны гудки обоих заводов.

6. Две радиостанции расположены в 600 км одна от другой. Дальность приема одной 400 км, другой – 300 км. Начертите, в масштабе 100 км в 1 см, границу местности, где можно принимать обе станции.

Р е ш е н и е сходно с решением предыдущей задачи

§ 12. Измерение углов

Какою мерою измеряются углы? Д л и н у линий измеряют д л и н о ю определенной линейки (метром); в е с вещей – в е с о м определенной гири. Так и у г л ы измеряют определенным у г л о м, который принимают за меру углов. Мерою для углов избран

п р я м о й угол, потому что все прямые углы имеют одну и туже величину. Но прямой угол слишком велик, чтобы служить удобной единицей меры; поэтому пользуются некоторою д о л е ю его – именно 90-й. Прямой угол делят на 90 равных частей, и такими частями измеряют все прочие углы, т. е. узнают, сколько этих частей заключается в измеряемом угле. 90-я доля прямого угла называется у г л о в ы м г р а д у с о м. Угол в один градус весьма мал; все же для точных измерений приходится пользоваться даже долями такого угла. Принято употреблять для этого 60-ю долю градуса; она называется у г л о в о ю м и н у т о ю. Итак:

прямой угол = 90 углов, градусам,

градус = 60 углов, минутам.

На письме градус сокращенно обозначается маленьким кружком (как и градус температуры), а минута – знаком ’. Например, 23° 27’ означает 23 градуса 27 минут.

Объясним теперь, каким образом производится измерение углов на практике.

Проведем в какой-нибудь окружности два диаметра под прямым углом друг к другу (черт. 30). Получим четыре угла (1, 2, 3 и 4), вершины которых лежат в центре. Угол, вершина которого лежит в центре круга, называется ц е н т р а л ь н ы м углом. У нас имеется, следовательно, 4 равных центральных угла. Легко убедиться, что в этом случае равны и те 4 дуги, которые лежат между сторонами наших углов, т. е. что дуга АD = дуге DB= дуге ВС = дуге СА. Для этого достаточно лишь мысленно перегнуть окружность по начерченным диаметрам. При перегибании по диаметру АВ прямая ODдолжна пойти по ОС, потому что угол 4 равен углу 3; точка D должна оказаться в точке С, потому что OD = ОС (как радиусы одной окружности). Значит, начала (А) и концы дуг ADи СА совпадут; но при этом непременно совпадут и все промежуточные точки обеих дуг, потому что они удалены от центра О одинаково. Таким же образом можно убедиться, что равны между собою все 4 дуги. Вообще, равные центральные углы одной окружности имеют всегда и равные дуги между их сторонами. Поэтому, если каждый из 4-х прямых углов 1, 2, 3, 4 разделить на 90 равных частей, то и дуги между ними разделятся на равные части, которые будут составлять 360-ю долю полной окружности. Эта 360-я часть полной окружности тоже называется «градусом», но – в отличие от углового – д у г о в ы м. Мы видим, что каждому дуговому градусу отвечает один угловой градус; поэтому сколько между сторонами какого-нибудь центрального угла содержится д у г о в ы х градусов, столько же в этом угле у г л о в ы х градусов. Узнать же, сколько между сторонами измеряемого угла дуговых градусов, можно при помощи особого чертежного инструмента – т р а н с п о р т и р а.


Еще от автора Яков Исидорович Перельман
Быстрый счет. Тридцать простых приемов устного счета

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Занимательная физика. Книга 1

Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.


Головоломки. Задачи. Фокусы. Развлечения

«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.


Головоломки и развлечения

В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.


Занимательная астрономия

 Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.


Математические головоломки

Всем известны первые четыре действия в математике: сложение, вычитание, умножение и деление. Но есть и еще три действия! О них и расскажет книга Якова Перельмана "Математические головоломки". С этой книгой будет легко составлять и решать уравнения, возводить числа в степень, извлекать корни. Автор поделится секретами быстрого счета и решением множества хитроумных задач. Для среднего школьного возраста.


Рекомендуем почитать
Алгоритм решения 10 проблемы Гильберта

Всем известно, что существуют тройки натуральных чисел, верных для Теоремы Пифагора. Но эти числа в основном находили методом подбора. И если доказать, что есть некий алгоритм нахождения этих троек чисел, то возможно утверждение о том, что 10 проблема Гильберта неразрешима ошибочно..


У интуиции есть своя логика. Гёдель. Теоремы о неполноте

Курт Гёдель изменил понимание математики. Две теоремы о неполноте, сформулированные им в 1931 году, с помощью формальной логики выявили хрупкость фундамента великого здания математики, которое усердно строили со времен Евклида. Научное сообщество было вынуждено признать, что справедливость той или иной гипотезы может лежать за гранью любой рациональной попытки доказать ее, и интуицию нельзя исключить из царства математики. Гёдель, получивший образование в благополучной Вене межвоенного периода, быстро заинтересовался эпистемологией и теорией доказательств.


Том 42. Путешествие от частицы до Вселенной. Математика газовой динамики

Возможно ли, заглянув в пустой сосуд, увидеть карту нашей Вселенной? Ответ: да! Ведь содержимое пустого (на первый взгляд) сосуда — это бурлящий мир, полный молекул, которые мчатся с головокружительными скоростями. А поведение молекул газа иллюстрирует многочисленные математические теории, принципиально важные для понимания мироустройства. Именно исследования свойств газа позволили ученым ближе рассмотреть такие сложные понятия, как случайность, энтропия, теория информации и так далее. Попробуем и мы взглянуть на Вселенную через горлышко пустого сосуда!


Введение в криптографию

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Геометрия: Планиметрия в тезисах и решениях. 9 класс

В пособии конспективно изложен школьный курс геометрии. Приведены комплекты экзаменационных билетов, задачи и их решения, распределённые по различным уровням сложности.Материалы пособия соответствуют учебной программе школьного курса геометрии.Для учителей и учащихся 9-х классов.


Как три вектора один детерминант в нуль обратили

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.