Жар холодных числ и пафос бесстрастной логики - [61]

Шрифт
Интервал

Коль скоро хороший математик-программист поймет постановку задачи, он сумеет рано или поздно (то есть опять-таки «в принципе», в предположении неограниченного времени, пространства и материалов) перевести ее на язык вычислительной машины. Но если объяснения заказчика будут не ясными, если в цепи мыслей у него будут разрывы, заполненные лишь смутными, недодуманными до конца идеями или выражением собственного отношения к предмету, то самый выдающийся программист окажется бессильным. Процесс, который его просят осуществить, в таком случае не будет ЭВМ-вычислимым. Но будет ли он вычислимым в каком-либо другом, пусть даже очень широком смысле?

Можно попытаться представить себе дальнейшее развитие событий при встрече этих двух людей. Математик после нескольких безуспешных выслушиваний заказчика начнет все откровеннее говорить последнему, что у него не все в порядке с ясностью понятий, строгостью и логикой. Тогда может произойти следующее: заказчик, не будучи в состоянии ясно изложить проблему, а математик — помочь ему в постановке задачи, не смогут договориться друг с другом, и заказчик покинет вычислительный центр с убеждением, что кибернетика — это красивый мыльный пузырь, который лопается при соприкосновении с реальностью, математик же подумает: правы те, кто считает математику единственной точной наукой, представители же нематематических наук говорят то, что сами до конца не понимают. Наверно, больше всего достанется при этом ученым-гуманитариям...

Но диалог математика и нематематика может иметь и иной исход. Нематематик может понять, что в его объяснениях действительно имеются неясности, которые можно устранить. А математик может взяться за освоение фактического материала предложенной задачи, с тем чтобы уточнить ее постановку. При этом он произведет — с одобрения нематематика — разумные упрощения задачи, делающие ее доступной для имеющейся в его распоряжении ЭВМ. Либо же математик выяснит, что, хотя задача (в определенных упрощениях) поддается точной формулировке, современных средств вычислительной техники недостаточно для ее решения. Тогда нематематику придется подождать, когда вычислительные мощности возрастут настолько, что задача окажется доступной для машинного решения.

Могут возникнуть, однако, и существенно менее утешительные ситуации. Одна из них может состоять в том, что у математика сложится убеждение (подкрепленное вескими соображениями): задача столь сложна, что ее решение окажется недоступным для любых вычислительных систем, которые могут появиться на любом мыслимом этапе грядущего развития цивилизации.

Что задачи, недоступные для решения по программе определенного типа, которую мы можем составить в настоящее время, для любых машин, мыслимых сконструированными в будущем, существуют, убедиться нетрудно. Таковой, например, является задача автоматизации игры в шахматы, основанная на описанной выше идее полного перебора вариантов. По оценке Шеннона число вариантов в этой игре достигает порядка 10>120. Если допустить, что на оценку каждого варианта машина тратит одну миллиардную секунды (допущение, колоссально далекое от возможностей даже проектируемых машин четвертого поколения, быстродействие которых, по имеющимся данным, достигнет нескольких миллиардов элементарных операций в секунду) то расчет вариантов, необходимый для автоматизации шахматной игры, займет время, большее, чем время предполагаемого существования нашей галактики!

Конечно, программа, основанная на простом переборе очень неэкономна. Можно строить — и уже построены - иные программы игры в шахматы; лучшие из них основаны на принципах, извлекаемых из изучения того, как принимают решение в игре люди — мастера шахматной игры. Интересные принципы построения программы машинной игры в шахматы разработаны экс-чемпионом мира М. М. Ботвинником[7].

Программы, основанные на изучении и использовании принципов мышления человека, решающего аналогичные задачи, называются эвристическими[8]. Во многих из них автоматизация решения задач получается за счет того, что не каждая задача (из класса задач того типа, на решение которых рассчитана данная программа) может быть фактически решена машиной. Это может происходить, в частности, от того, что не все свойства объектов, которые фигурируют в задаче, учтены в ее программе (некоторые из них могут быть попросту неизвестны). В случае шахмат у специалистов — как математиков, так и шахматных мастеров и гроссмейстеров, занимающихся шахматными программами, имеется чувство уверенности, что шахматная программа, играющая в силу шахматного мастера, будет со временем написана.

Может ли это иметь место в применении к любым задачам? Этот вопрос в настоящее время следует признать открытым. Однако многие выдающиеся математики склоняются в пользу отрицательного ответа. О мнении одного из них — Дж. фон Неймана — стоит сказать специально.

Джон фон Нейман (1903—1957) принадлежал к числу великих математиков и естествоиспытателей XX столетия. Получив разностороннее — математическое и естественнонаучное — образование (он имел диплом инженера-химика) в Европе (сам он родился в Будапеште), он связал свою научную судьбу с американской наукой. Начав свой путь в науке с логики (фон Нейман явился создателем одной из первых аксиоматических теорий множеств), он стоял у колыбели современной вычислительной техники


Еще от автора Борис Владимирович Бирюков
Теория смысла Готлоба Фреге

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Быть русскими — наша судьба

Новая книга В.Н. Тростникова, выходящая в издательстве «Грифон», посвящена поискам ответов на судьбоносные вопросы истории России.За последнее десятилетие мы восстановили и частную собственность, и свободу слова, ликвидировали «железный занавес»… Но Запад по-прежнему относится к нам необъективно и недружественно.Ожесточаться не нужно. Русские – самый терпеливый народ в мире, и мы должны перетерпеть и несправедливое отношение к себе Запада. Ведь придёт час, когда Запад сам поймёт необходимость заимствовать у нас то, что он потерял, а мы сохранили, – Христа.Книга рассчитана на широкий круг читателей.


Социальная мифология, мыслительный дискурс и русская культура

Бирюков Борис Владимирович — доктор философских наук, профессор, руководитель Межвузовского Центра изучения проблем чтения (при МГЛУ), вице-президент Русской Ассоциации Чтения, отвечающий за её научную деятельность.Сфера научных интересов: философская логика и ее история, история отечественной науки, философия математики, проблемы оснований математики. Автор и научный редактор более пятисот научных трудов, среди них книги, входящие в золотой фонд отечественной историко-научной и логической мысли. Является главным научным редактором и вдохновителем научного сборника, издаваемого Русской Ассоциацией Чтения — «Homo legens» («Человек читающий»).


Понимаем ли мы Евангелие?

Виктор Николаевич Тростников (род. 1928 г.), писатель, ученый, философ. Профессор Российского Православного Университета им. св. Иоанна Богослова. Автор более ста работ по различным разделам физики и математики, а также книг по научной апологетикеКнига содержит размышления автора об опыте осмысления Вечных Истин в свете современного знания.


Трактат о любви. Духовные таинства

Цель «Трактата о любви» В.Н. Тростникова – разобраться в значении одного-единственного, но часто употребляемого нами слова «любовь». Неужели этому надо посвящать целое исследование? Да, получается так, потому что слово-то одно, а значений у него много. Путь истинной любви обрисован увлекательно, понятно и близко молодому и просвещенному современному читателю, который убедится, что любовь в ее высшем проявлении есть любовь к Богу. Это книга – для всех любящих сердец.


А может  быть, вы  математик?

Опубликовано в журнале «Юность» № 12 (163), 1968Раздел «Наука и техника».


Рекомендуем почитать
Таблица умножения. Как запомнить. Новый метод

Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)


Время переменных. Математический анализ в безумном мире

«Время переменных» – веселая книга о математике вокруг нас. Двадцать восемь увлекательных рассказов, посвященных разным аспектам математики, сопровождаются забавными авторскими рисунками. Математический анализ для Орлина – это универсальный язык, способный выразить все, с чем мы сталкиваемся каждый день, – любовь, риск, время и, самое главное, постоянные изменения. Тема движения времени находит отражение и в названиях частей книги – «Мгновения» и «Вечности», и в ее персонажах – от Шерлока Холмса до Марка Твена и Дэвида Фостера Уоллеса.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.