Жар холодных числ и пафос бесстрастной логики - [63]
Вывод, к которому мы приходим, заключается в том, что, рассматривая возможности вычислительных машин, к различию между потенциально осуществимым и фактически реализуемым надо добавить различие между фактически реализуемым и фактически нереализуемым, не только в настоящее время, но и в любом обозримом будущем. На вопрос о границе между потенциально осуществимым и неосуществимым с помощью автоматов ответ дает описанный нами тезис кибернетики, который следует признать имеющим важное гносеологическое содержание[12]. На вопрос же о том, где пролегает граница между тем, что для математики, вычислительной техники и кибернетики реально осуществимо и что реально невозможно (хотя и возможно потенциально), ответа мы не знаем.
Имеются два подхода к решению этого вопроса (впрочем, они тесно связаны между собой). Первый из них состоит в изучении феномена сложности в окружающем нас мире[13]. На важность изучения этого феномена внимание обратил, как мы видели, фон Нейман. Добавим теперь, что им была высказана следующая идея: если система становится достаточно Сложной, она приобретает способность не просто воспроизводить подобные себе системы (математике-логическими средствами фон Нейман доказал, как возможны самовоспроизводящиеся автоматы[14]), но и порождать системы возрастающей сложности. Разумеется, для придания ясности этому утверждению требуется уточнение самого понятия сложности. Развивающиеся в настоящее время работы по теории сложности вычислений и алгоритмов[15] как раз и направлены на поиски такого уточнения.
Второй подход состоит в изучении человеческого мышления. вообще сознания — во всем богатстве его проявлений. О явлениях сознания и мышления мы еще знаем до обидного мало. Известно, конечно, что человеческий ум, решая какую-то проблему, пробует множество самых разных путей, почему-то вдруг бросает одни из них и переходит к другим, а затем возвращается к первым; широко пользуется ассоциациями, даже если они идут от такого, казалось бы, постороннего источника, как фонетическое звучание слов; постоянно употребляет метод перебора и поочередной проверки гипотез, то есть действует весьма сложным и недостаточно выясненным в психологической науке образом. Мы только можем догадываться о механизмах «человеческого» получения истинных утверждений. Вот как например, представляет себе схему этого процесса современный американский философ Марио Бунге:
«Разум, так сказать, пересматривает запас известных утверждений, относящихся к той же области, а иногда также и к соседним областям, он быстро проверяет одно за другим возможные отношения между подобными элементами, пока не откроет, если ему повезет, такого, которое сделает желаемое доказательство возможным. Однако это сканирование гораздо более беспорядочно и менее эффективно, чем, то, на котором лежит ответственность за телевизионное изображение. Для осуществления такого зигзагообразного продвижения нет никаких других полезных правил, кроме как запастись терпением да накопить побольше плодотворных или наводящих на размышление соотношений»[16].
Конечно, объективное значение могут иметь только те результаты интеллектуальной деятельности, которые верно отображают объект и выражаются в общеязыковых или логико-математических структурах, понятных (полностью или частично) для других людей. Методологические догадки и особенности эмоционального восприятия фактов одного человека могут быть, разумеется, интересными и полезными для другого человека, так как могут помочь ему думать и отыскивать решения проблем. Но объективная истина — окончательный результат индивидуальной или групповой мыслительной деятельности — должна быть реализуема в знаковой системе, поскольку она должна обладать свойством храниться, передаваться другим людям и поколениям людей и даже гипотетическим цивилизациям иных миров, как могут храниться и передаваться материальные предметы.
Истина есть описание, соответствующее описываемой реальности, соответствие не субъективное, а проверяемое и могущее быть овеществленным с той же степенью реальности, с какой существуют вещи. Такими свойствами обладают знаковые структуры, наделенные человеком смыслом, то есть выражающие его знания о действительности.
Кибернетические устройства очень хорошо выявляют элементы нашего мышления, имеющие объективную ценность. Объясняя свои идеи другому человеку, особенно на словах, мы можем навязать ему свое ощущение истины, загипнотизировать его своей горячностью, заразить энтузиазмом. Машина все это «пропустит мимо ушей»; ей не нужны эти «катализаторы» нашего логического мышления, а нужен лишь его формализуемый результат. Поэтому когда говорится, что ЭВМ может выводить теоремы, писать стихи, сочинять музыку, играть в шахматы и т. д., вовсе не имеется в виду, что машина делает это точно таким же способом, как человек; «лаборатории» ЭВМ и человека отличаются друг от друга столь разительным образом, что, пожалуй, их сближает (во всяком случае пока) в основном получение одного и того же результата. Правда, некоторые исследователи считают, что машинные процедуры и человеческое мышление используют сходные элементарные операции — переход некоторого объекта (нейрона, ферритового кольца) из одного состояния в другое, передача электрического импульса по проводнику, но схемы объединения этих атомарных операций в слаженно действующий механизм переработки информации глубоко различны.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Бирюков Борис Владимирович — доктор философских наук, профессор, руководитель Межвузовского Центра изучения проблем чтения (при МГЛУ), вице-президент Русской Ассоциации Чтения, отвечающий за её научную деятельность.Сфера научных интересов: философская логика и ее история, история отечественной науки, философия математики, проблемы оснований математики. Автор и научный редактор более пятисот научных трудов, среди них книги, входящие в золотой фонд отечественной историко-научной и логической мысли. Является главным научным редактором и вдохновителем научного сборника, издаваемого Русской Ассоциацией Чтения — «Homo legens» («Человек читающий»).
Новая книга В.Н. Тростникова, выходящая в издательстве «Грифон», посвящена поискам ответов на судьбоносные вопросы истории России.За последнее десятилетие мы восстановили и частную собственность, и свободу слова, ликвидировали «железный занавес»… Но Запад по-прежнему относится к нам необъективно и недружественно.Ожесточаться не нужно. Русские – самый терпеливый народ в мире, и мы должны перетерпеть и несправедливое отношение к себе Запада. Ведь придёт час, когда Запад сам поймёт необходимость заимствовать у нас то, что он потерял, а мы сохранили, – Христа.Книга рассчитана на широкий круг читателей.
Автор книги – известный религиозный философ – стремится показать, насколько простая, глубокая и ясная вещь «настоящая философия» – не заказанное напористой и самоуверенной протестантской цивилизацией её теоретическое оправдание, а честное искание Истины – и как нужна такая философия тем русским людям, которые по своей натуре нуждаются в укреплении веры доводами разума.В форме увлекательных бесед показаны не только высоты и бездны европейской философии, но и значительные достижения русской философской школы, уходящей своими корнями в православное мировосприятие.
Виктор Николаевич Тростников (род. 1928 г.), писатель, ученый, философ. Профессор Российского Православного Университета им. св. Иоанна Богослова. Автор более ста работ по различным разделам физики и математики, а также книг по научной апологетикеКнига содержит размышления автора об опыте осмысления Вечных Истин в свете современного знания.
Цель «Трактата о любви» В.Н. Тростникова – разобраться в значении одного-единственного, но часто употребляемого нами слова «любовь». Неужели этому надо посвящать целое исследование? Да, получается так, потому что слово-то одно, а значений у него много. Путь истинной любви обрисован увлекательно, понятно и близко молодому и просвещенному современному читателю, который убедится, что любовь в ее высшем проявлении есть любовь к Богу. Это книга – для всех любящих сердец.
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.