Жар холодных числ и пафос бесстрастной логики - [65]

Шрифт
Интервал

Работая сотни тысяч лет как система, отражающая внешний мир, язык запечатлел в себе какие-то постоянные черты действительности. Первые размышления о логике, как и длиннейший ряд последующих исследований, вовсе не были изучением объективно существующей реальности, называемой природой, это было изучение вторичной, но объективной, не зависящей от воли отдельных людей и даже всех людей вместе, системы — отражающей системы.

Древний человек не понимал происхождения логики, но побуждаемый необходимостью, применял ее на деле. Философы элейекой школы, а затем Сократ, Платон и Аристотель сознательно заставили логику «работать». Во-первых, они сильно продвинули теоретический анализ логики, и это дало им в руки достаточно сильный инструмент; во-вторых, они широко использовали логику как средство воздействия на поведение людей; в-третьих, они оказали огромное влияние на образ мышления Эвдокса, Евклида, Архимеда, Аполлония и других великих геометров древнего мира, создавших разнообразные методы математических доказательств, основанные на применении правил логики в геометрии.

Можно сказать, что последнее было н полезно» и вредно для логики: та часть логики, которая «спряталась» в геометрии, как бы перестала быть логикой, приняла псевдоним математики и, слившись с древней наукой о числах — арифметикой, стала развиваться независимо от той части, которая по-прежнему оставалась наукой об элементарных правилах рассуждений. Классическая Логика от этого сильно пострадала, но проникновение вируса логики в клетки математики должно было сыграть свою роль через много столетий.

В средние века логика и математика развивались параллельно. В это же время начали возникать мечты об «искусственном интеллекте». Наиболее чуткие ко всему комплексу наук в целом, наиболее образованные люда эпохи пытались выделить что-то общее для всех видов словесного и формализованного рассуждения и проанализировать его. Постепенно, благодаря математике, стали создаваться все более совершенные знаковые системы, которые позволяли всерьез ставить вопрос о знаковом моделировании логического.

XIX век был веком кульминации классической математики и, как всегда бывает, именно поэтому был веком зарождения нового взгляда на математическое знание, на его роль в человеческом познании и его связь с другими науками, в том числе с логикой.

К началу нашего столетия математическая логика и «языковая» логика настолько близко подошли друг к другу, что многими учеными стали рассматриваться как два аспекта одной науки. Произошло великое воссоединение разошедшихся когда-то направлений человеческой мысли. Многое теперь было готово для появления кибернетики; однако не было ясного осознания того, что все процедуры рассуждений и вычислений, производимые по четким правилам, формализованные вычислительно-дедуктивные процессы — в определенном смысле (и при определенных ограничениях) эквивалентны и что их изучение разными науками обусловлено лишь историческими и методологическими причинами.

Поколение математиков и логиков, родившихся уже в XX веке, пользуясь созданным к этому времени мощным аналитическим аппаратом, установило довольно четкие границы понятий «вычислимость» и «выводимость». В век дифференциации наук логика стремительно повела широкий комплекс научных дисциплин к синтезу. Оказалось, что нет принципиальной разницы между арифметикой, логикой и механическим моделированием поведения людей и вещей. Оказалось, что все эти средства потенциально одинаково пригодны для моделирования, то есть адекватного (часто, правда, только с тем, или иным приближением) описания и предсказания любого детерминированного процесса.

Вышедшая в это время на научную сцену семиотика позволила взглянуть на программу формализации математики, провозглашенную Гильбертом, не как на идеалистическую утопию, а как на серьезную программу разработки средств знакового моделирования регулярно осуществляемых процедур дискретного рода. Но как раз к этому моменту технические достижения позволили претворить знаковое моделирование в физическое. Только недавно соединившиеся математика и логика объединились теперь с электроникой и, взаимодействуя с науками о жизни и технике, положили начало кибернетике.

«Бумажная» математика, разумеется, от этого не пострадала; совсем наоборот, она получила теперь в свое распоряжение мощные вспомогательные средства. Громадное же прикладное значение кибернетики, скажем точнее — социальное ее значение — сделало таким же громадным и значение математики, которая теперь органично включила в себя логику. Сейчас мы видим уже контуры «супернауки», в которой наименования «математика», «логика», «теория логического вывода», «теоретическая кибернетика», «программирование», «теория систем», «семиотика» и другие становятся названиями отделов и подотделов.

Однако диалектика развития такова, что именно появление кибернетики поставило серьезнейшие проблемы. Иллюзия Лейбница, будто с появлением «механического интеллекта» все станет просто, рассеялась как дым. Диалектический процесс познания нельзя в целом автоматизировать— истина по своей сути не формальна, а содержательна. И чтобы перекинуть мост между формальной доказуемостью и содержательной истинностью, пришлось разработать специальную науку —логическую семантику.


Еще от автора Борис Владимирович Бирюков
Теория смысла Готлоба Фреге

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Быть русскими — наша судьба

Новая книга В.Н. Тростникова, выходящая в издательстве «Грифон», посвящена поискам ответов на судьбоносные вопросы истории России.За последнее десятилетие мы восстановили и частную собственность, и свободу слова, ликвидировали «железный занавес»… Но Запад по-прежнему относится к нам необъективно и недружественно.Ожесточаться не нужно. Русские – самый терпеливый народ в мире, и мы должны перетерпеть и несправедливое отношение к себе Запада. Ведь придёт час, когда Запад сам поймёт необходимость заимствовать у нас то, что он потерял, а мы сохранили, – Христа.Книга рассчитана на широкий круг читателей.


Социальная мифология, мыслительный дискурс и русская культура

Бирюков Борис Владимирович — доктор философских наук, профессор, руководитель Межвузовского Центра изучения проблем чтения (при МГЛУ), вице-президент Русской Ассоциации Чтения, отвечающий за её научную деятельность.Сфера научных интересов: философская логика и ее история, история отечественной науки, философия математики, проблемы оснований математики. Автор и научный редактор более пятисот научных трудов, среди них книги, входящие в золотой фонд отечественной историко-научной и логической мысли. Является главным научным редактором и вдохновителем научного сборника, издаваемого Русской Ассоциацией Чтения — «Homo legens» («Человек читающий»).


Понимаем ли мы Евангелие?

Виктор Николаевич Тростников (род. 1928 г.), писатель, ученый, философ. Профессор Российского Православного Университета им. св. Иоанна Богослова. Автор более ста работ по различным разделам физики и математики, а также книг по научной апологетикеКнига содержит размышления автора об опыте осмысления Вечных Истин в свете современного знания.


Трактат о любви. Духовные таинства

Цель «Трактата о любви» В.Н. Тростникова – разобраться в значении одного-единственного, но часто употребляемого нами слова «любовь». Неужели этому надо посвящать целое исследование? Да, получается так, потому что слово-то одно, а значений у него много. Путь истинной любви обрисован увлекательно, понятно и близко молодому и просвещенному современному читателю, который убедится, что любовь в ее высшем проявлении есть любовь к Богу. Это книга – для всех любящих сердец.


А может  быть, вы  математик?

Опубликовано в журнале «Юность» № 12 (163), 1968Раздел «Наука и техника».


Рекомендуем почитать
Примени математику

На примере решения большого числа конкретных задач в основном практического содержания показывается, как использовать математические идеи и методы для нахождения выхода из разного рода затруднительных положений, которые могут возникнуть в повседневной жизни. Рассматриваются вопросы построения и изменения ограниченными средствами, поиска оптимального решения в той или иной ситуации, способы быстрого счета, задачи на разрезание, переливание, взвешивание и т. п. Для школьников и всех любителей математики. Источник:http://mathemlib.ru/books/item/f00/s00/z0000034/index.shtml.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.