Жар холодных числ и пафос бесстрастной логики - [65]
Работая сотни тысяч лет как система, отражающая внешний мир, язык запечатлел в себе какие-то постоянные черты действительности. Первые размышления о логике, как и длиннейший ряд последующих исследований, вовсе не были изучением объективно существующей реальности, называемой природой, это было изучение вторичной, но объективной, не зависящей от воли отдельных людей и даже всех людей вместе, системы — отражающей системы.
Древний человек не понимал происхождения логики, но побуждаемый необходимостью, применял ее на деле. Философы элейекой школы, а затем Сократ, Платон и Аристотель сознательно заставили логику «работать». Во-первых, они сильно продвинули теоретический анализ логики, и это дало им в руки достаточно сильный инструмент; во-вторых, они широко использовали логику как средство воздействия на поведение людей; в-третьих, они оказали огромное влияние на образ мышления Эвдокса, Евклида, Архимеда, Аполлония и других великих геометров древнего мира, создавших разнообразные методы математических доказательств, основанные на применении правил логики в геометрии.
Можно сказать, что последнее было н полезно» и вредно для логики: та часть логики, которая «спряталась» в геометрии, как бы перестала быть логикой, приняла псевдоним математики и, слившись с древней наукой о числах — арифметикой, стала развиваться независимо от той части, которая по-прежнему оставалась наукой об элементарных правилах рассуждений. Классическая Логика от этого сильно пострадала, но проникновение вируса логики в клетки математики должно было сыграть свою роль через много столетий.
В средние века логика и математика развивались параллельно. В это же время начали возникать мечты об «искусственном интеллекте». Наиболее чуткие ко всему комплексу наук в целом, наиболее образованные люда эпохи пытались выделить что-то общее для всех видов словесного и формализованного рассуждения и проанализировать его. Постепенно, благодаря математике, стали создаваться все более совершенные знаковые системы, которые позволяли всерьез ставить вопрос о знаковом моделировании логического.
XIX век был веком кульминации классической математики и, как всегда бывает, именно поэтому был веком зарождения нового взгляда на математическое знание, на его роль в человеческом познании и его связь с другими науками, в том числе с логикой.
К началу нашего столетия математическая логика и «языковая» логика настолько близко подошли друг к другу, что многими учеными стали рассматриваться как два аспекта одной науки. Произошло великое воссоединение разошедшихся когда-то направлений человеческой мысли. Многое теперь было готово для появления кибернетики; однако не было ясного осознания того, что все процедуры рассуждений и вычислений, производимые по четким правилам, формализованные вычислительно-дедуктивные процессы — в определенном смысле (и при определенных ограничениях) эквивалентны и что их изучение разными науками обусловлено лишь историческими и методологическими причинами.
Поколение математиков и логиков, родившихся уже в XX веке, пользуясь созданным к этому времени мощным аналитическим аппаратом, установило довольно четкие границы понятий «вычислимость» и «выводимость». В век дифференциации наук логика стремительно повела широкий комплекс научных дисциплин к синтезу. Оказалось, что нет принципиальной разницы между арифметикой, логикой и механическим моделированием поведения людей и вещей. Оказалось, что все эти средства потенциально одинаково пригодны для моделирования, то есть адекватного (часто, правда, только с тем, или иным приближением) описания и предсказания любого детерминированного процесса.
Вышедшая в это время на научную сцену семиотика позволила взглянуть на программу формализации математики, провозглашенную Гильбертом, не как на идеалистическую утопию, а как на серьезную программу разработки средств знакового моделирования регулярно осуществляемых процедур дискретного рода. Но как раз к этому моменту технические достижения позволили претворить знаковое моделирование в физическое. Только недавно соединившиеся математика и логика объединились теперь с электроникой и, взаимодействуя с науками о жизни и технике, положили начало кибернетике.
«Бумажная» математика, разумеется, от этого не пострадала; совсем наоборот, она получила теперь в свое распоряжение мощные вспомогательные средства. Громадное же прикладное значение кибернетики, скажем точнее — социальное ее значение — сделало таким же громадным и значение математики, которая теперь органично включила в себя логику. Сейчас мы видим уже контуры «супернауки», в которой наименования «математика», «логика», «теория логического вывода», «теоретическая кибернетика», «программирование», «теория систем», «семиотика» и другие становятся названиями отделов и подотделов.
Однако диалектика развития такова, что именно появление кибернетики поставило серьезнейшие проблемы. Иллюзия Лейбница, будто с появлением «механического интеллекта» все станет просто, рассеялась как дым. Диалектический процесс познания нельзя в целом автоматизировать— истина по своей сути не формальна, а содержательна. И чтобы перекинуть мост между формальной доказуемостью и содержательной истинностью, пришлось разработать специальную науку —логическую семантику.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Бирюков Борис Владимирович — доктор философских наук, профессор, руководитель Межвузовского Центра изучения проблем чтения (при МГЛУ), вице-президент Русской Ассоциации Чтения, отвечающий за её научную деятельность.Сфера научных интересов: философская логика и ее история, история отечественной науки, философия математики, проблемы оснований математики. Автор и научный редактор более пятисот научных трудов, среди них книги, входящие в золотой фонд отечественной историко-научной и логической мысли. Является главным научным редактором и вдохновителем научного сборника, издаваемого Русской Ассоциацией Чтения — «Homo legens» («Человек читающий»).
Новая книга В.Н. Тростникова, выходящая в издательстве «Грифон», посвящена поискам ответов на судьбоносные вопросы истории России.За последнее десятилетие мы восстановили и частную собственность, и свободу слова, ликвидировали «железный занавес»… Но Запад по-прежнему относится к нам необъективно и недружественно.Ожесточаться не нужно. Русские – самый терпеливый народ в мире, и мы должны перетерпеть и несправедливое отношение к себе Запада. Ведь придёт час, когда Запад сам поймёт необходимость заимствовать у нас то, что он потерял, а мы сохранили, – Христа.Книга рассчитана на широкий круг читателей.
Автор книги – известный религиозный философ – стремится показать, насколько простая, глубокая и ясная вещь «настоящая философия» – не заказанное напористой и самоуверенной протестантской цивилизацией её теоретическое оправдание, а честное искание Истины – и как нужна такая философия тем русским людям, которые по своей натуре нуждаются в укреплении веры доводами разума.В форме увлекательных бесед показаны не только высоты и бездны европейской философии, но и значительные достижения русской философской школы, уходящей своими корнями в православное мировосприятие.
Виктор Николаевич Тростников (род. 1928 г.), писатель, ученый, философ. Профессор Российского Православного Университета им. св. Иоанна Богослова. Автор более ста работ по различным разделам физики и математики, а также книг по научной апологетикеКнига содержит размышления автора об опыте осмысления Вечных Истин в свете современного знания.
Цель «Трактата о любви» В.Н. Тростникова – разобраться в значении одного-единственного, но часто употребляемого нами слова «любовь». Неужели этому надо посвящать целое исследование? Да, получается так, потому что слово-то одно, а значений у него много. Путь истинной любви обрисован увлекательно, понятно и близко молодому и просвещенному современному читателю, который убедится, что любовь в ее высшем проявлении есть любовь к Богу. Это книга – для всех любящих сердец.
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.