Жар холодных числ и пафос бесстрастной логики - [60]
Тезис кибернетики утверждает, что всякий детерминированный процесс, сущность которого можно объяснить человеку, потенциально осуществим машиной, то есть будет фактически выполнен на ЭВМ, которой предоставлено неограниченное время и которая имеет неограниченную память[4]. Первое условие можно переформулировать как условие достаточного быстродействия, поэтому данный тезис можно выразить еще и так: процесс, о котором сказано выше, всегда можно фактически выполнить на машине с достаточно высоким быстродействием и обладающей достаточно емким запоминающим устройством. Если бы такая машина существовала, то «шахматная проблема» давно была бы решена.
Программа для ее решения не представляет трудности; идея такой программы была выдвинута одним из основателей кибернетики Клодом Шенноном больше двадцати лет назад[5]. Соответствующий метод называется «построением дерева игры», и смысл его заключается в следующем. Выписываются все варианты первого хода белых; для каждого из них выписываются все пары ходов, состоящие из текущего первого хода белых и возможного, допустимого правилами игры ответного хода черных (то есть с каждым возможным ходом белых сопоставляются по очереди все возможные ходы черных, включая нелепые); затем с каждым ходом черных сопоставляются по очереди все возможные ходы белых и так далее. Если изобразить это на диаграмме, возникает ветвящееся «дерево» (отсюда и название метода). Ветви будут обрываться на ходах, ведущих к поражению одной из сторон или ничейным ситуациям.
Построив такое дерево, можно проанализировать его, идя обратным путем — от концов веток к корню дерева, и установить, имеется ли такой первый ход белых, что, какой бы ни сделали черные ответный ход, существует такой второй ход белых, что, какой бы ни сделали второй ход черные, можно будет найти такой третий ход белых... и т. д., что черные терпят поражение. Если такой первый ход существует и тот, кто начинает игру, знает свойства ее дерева, он будет выигрывать в ста процентах случаев, независимо от того, знает ли свойства дерева игры его противник. Если такого первого хода не существует, то сторона, делающая первый ход, может выиграть только при условии, что противник не знает дерева игры и вследствие этого делает слабые ходы. Если черные знают свойства дерева игры, то тоже возможны различные ситуации. Быть может, в этом случае черные, опираясь на свойства дерева игры, при любых ходах белых могут обеспечить себе ничейный результат. Но этого может и не быть — это будет означать, что шахматы есть игра, в которой белые при абсолютно правильной игре всегда выигрывают[6].
Однако в любом случае ясно, что шахматы в принципе, так сказать, запрограммированы — несложные правила движения фигур и характеристика матовых ситуаций без труда переводятся на язык элементарных действий, доступных ЭВМ. Будь машины более быстродействующими и имей они достаточно большую память, они просчитали бы все варианты игры и запомнили все ее дерево, превратившись в «абсолютных» шахматистов. Эта игра в таком случае потеряла бы «интеллектуальный» интерес как объект исследования, подобно играм в «волки и овцы» и «крестики и нолики», свойства которых известны: в первой игре всегда выигрывают овцы, если они играют правильно, а во второй игре при наилучшей стратегии сторон всегда имеет место ничья.
Таким образом, следует отличать потенциальную осуществимость, о которой идет речь в кибернетическом тезисе (как и в других тезисах о вычислимости), от осуществимости посредством реально имеющихся средств. Ибо совпадать оба вида вычислимости могут только для сверхъестественного интеллекта.
В романе М. А. Булгакова «Мастер и Маргарита» есть сцена, в которой Воланд — этот гётевский Мефистофель русской литературы — с увлечением играет с другими представителями нечистой силы в шахматы. Поскольку Воланда и его свиту можно считать бесконечно быстрыми вычислителями с бесконечно большим объемом памяти (это подтверждается событиями, описанными в романе), игра в шахматы должна быть для них нелепым и скучным занятием; все дерево игры должно быть перед ними как на ладони! Игра, таким образом, не может быть для них интересной, и получается, что данная сцена с «кибернетической» точки зрения не очень убедительна. Что же касается людей, то шахматы не утратили бы для них интереса, если бы даже свойства игры были полностью выяснены и существовали автоматы, реализующие «абсолютные» шахматные игры; ведь сохранились (да и какой интерес вызывают!) состязания по бегу, хотя автомобили, поезда и самолеты «бегают» куда быстрее людей...
Но вернемся к математику, получившему заказ на выполнение умственной работы с помощью «усилителя интеллекта» — мощной вычислительной техники. Помимо того случая, когда длительность и объем соответствующих вычислений выходят за рамки возможностей данной ЭВМ, математик ответит заказчику отказом еще в одном случае если тот, кто предложил ему задачу, не сможет толково объяснить, какой детерминированный процесс нужно осуществить. Есть пословица «хорошо поставить проблему — значит наполовину решить ее»; для математика, в распоряжении которого имеется ЭВМ, это особенно справедливо.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Бирюков Борис Владимирович — доктор философских наук, профессор, руководитель Межвузовского Центра изучения проблем чтения (при МГЛУ), вице-президент Русской Ассоциации Чтения, отвечающий за её научную деятельность.Сфера научных интересов: философская логика и ее история, история отечественной науки, философия математики, проблемы оснований математики. Автор и научный редактор более пятисот научных трудов, среди них книги, входящие в золотой фонд отечественной историко-научной и логической мысли. Является главным научным редактором и вдохновителем научного сборника, издаваемого Русской Ассоциацией Чтения — «Homo legens» («Человек читающий»).
Новая книга В.Н. Тростникова, выходящая в издательстве «Грифон», посвящена поискам ответов на судьбоносные вопросы истории России.За последнее десятилетие мы восстановили и частную собственность, и свободу слова, ликвидировали «железный занавес»… Но Запад по-прежнему относится к нам необъективно и недружественно.Ожесточаться не нужно. Русские – самый терпеливый народ в мире, и мы должны перетерпеть и несправедливое отношение к себе Запада. Ведь придёт час, когда Запад сам поймёт необходимость заимствовать у нас то, что он потерял, а мы сохранили, – Христа.Книга рассчитана на широкий круг читателей.
Автор книги – известный религиозный философ – стремится показать, насколько простая, глубокая и ясная вещь «настоящая философия» – не заказанное напористой и самоуверенной протестантской цивилизацией её теоретическое оправдание, а честное искание Истины – и как нужна такая философия тем русским людям, которые по своей натуре нуждаются в укреплении веры доводами разума.В форме увлекательных бесед показаны не только высоты и бездны европейской философии, но и значительные достижения русской философской школы, уходящей своими корнями в православное мировосприятие.
Виктор Николаевич Тростников (род. 1928 г.), писатель, ученый, философ. Профессор Российского Православного Университета им. св. Иоанна Богослова. Автор более ста работ по различным разделам физики и математики, а также книг по научной апологетикеКнига содержит размышления автора об опыте осмысления Вечных Истин в свете современного знания.
Цель «Трактата о любви» В.Н. Тростникова – разобраться в значении одного-единственного, но часто употребляемого нами слова «любовь». Неужели этому надо посвящать целое исследование? Да, получается так, потому что слово-то одно, а значений у него много. Путь истинной любви обрисован увлекательно, понятно и близко молодому и просвещенному современному читателю, который убедится, что любовь в ее высшем проявлении есть любовь к Богу. Это книга – для всех любящих сердец.
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.