Загадки и диковинки в мире чисел - [22]
(Напомним, что в двоичной системе на первом месте справа стоят единицы, на втором – двойки, на третьем – четверки, на четвертом – восьмерки и т. д.)
Угадать число спичек в коробке
Тем же свойством двоичной системы счисления можно воспользоваться и для следующего фокуса. Вы предлагаете кому-нибудь взять неполную коробку со спичками, положить ее на стол, а ниже ее положить один за другим 8 бумажных квадратиков. Затем просите в вашем отсутствии проделать следующее: оставив половину спичек в коробке, перенести другую половину на ближайшую бумажку; если число спичек нечетное, то излишнюю спичку положить рядом с бумажкой, налево от нее. Спички, очутившиеся на бумажке, надо (не трогая лежащей рядом) разделить на две равные части: одну половину положить в коробку, другую – переложить на следующую бумажку; в случае нечетного числа остающуюся спичку положить рядом со второй бумажкой. Далее поступать таким же образом, всякий раз возвращая половину спичек обратно в коробку, а другую половину перекладывая на следующую бумажку, не забывая, при нечетном числе спичек, класть одну спичку рядом. В конце концов все спички, кроме одиночных, лежащих рядом с бумажками, возвратятся в коробку.
Когда это сделано, вы являетесь в комнату и, бросив взгляд на пустые бумажки, называете число спичек во взятой коробке.
Этот фокус обыкновенно сильно изумляет непосвященных: кажется совершенно непонятным, как можно по пустым бумажкам и случайным единичным спичкам догадаться о первоначальном числе спичек в коробке. В действительности же «пустые» бумажки в данном случае очень красноречивы: по ним и по одиночным спичкам можно буквально прочесть искомое число, потому что оно написано на столе – в двоичной системе счисления. Поясним это на примере. Пусть число спичек в коробке было 66. Последовательные операции с ними и окончательный вид бумажек показаны на следующих схемах:
Итого……..66.
Не нужно большой проницательности, чтобы сообразить, что проделанные со спичками операции, в сущности, те же самые, какие мы выполнили бы, если бы хотели выразить число спичек в коробке по двоичной системе счисления; окончательная же схема прямо изображает это число в двоичной системе, если пустые бумажки принять за нули, а бумажки, отмеченные сбоку спичкой, – за единицы. Читая схему снизу вверх, получаем
То есть в десятичной: 64 + 2 = 66.
Если бы в коробке было 57 спичек, мы имели бы иные схемы.
Искомое число, написанное по двоичной системе:
А в десятичной: 33 + 16 + 8 + 1 = 57.
Для разнообразия можно также пользоваться двумя и более спичечными коробками и отгадывать сумму заключающихся в них спичек.
Чтение мыслей по спичкам
Третье видоизменение того же фокуса представляет собою своеобразный способ отгадывания задуманного по спичкам. Загадавший должен мысленно делить задуманное число пополам, полученную половину опять пополам и т. д. (от нечетного числа отбрасывая единицу), при каждом делении класть перед собой спичку: направленную вдоль стола, если делится число четное; поперек, если приходится делить нечетное. К концу операции получается фигура вроде следующей:
Вы всматриваетесь в эту фигуру и безошибочно называете задуманное число: 137. Как вы узнаете его?
Способ станет ясен сам собою, если в выбранном примере (137) мы последовательно обозначим возле каждой спички то число, при делении которого она была положена:
Теперь понятно, что так как последняя спичка во всех случаях обозначает число 1, то не составляет труда, восходя от нее к предшествующим делениям, добраться до первоначально задуманного числа. Например, по фигуре
вы можете вычислить, что задумано было число 664. В самом деле, выполняя последовательно удвоения (начиная с конца) и не забывая прибавлять в надлежащих местах единицу, получаем:
Таким образом, пользуясь спичками, вы прослеживаете ход чужих мыслей, восстановляя всю цепь умозаключений.
Тот же результат мы можем получить иначе, сообразив, что лежащая спичка в данном случае должна соответствовать в двоичной системе нулю (деление на 2 без остатка), а стоящая – единице. Таким образом, в предшествовавшем примере мы имеем (читая справа налево) число
или в десятичной системе так:
128 + 8 + 1 = 137.
А в последнем примере задуманное число изображается по двоичной системе:
512 + 128 + 16 + 8 + 1 = 664.
Еще пример. Какое число было задумано, если из спичек получилась фигура:
Решение: 10010101 в двоичной системе, а в десятичной:
128 + 16 + 4+ 1 = 139.
Необходимо заметить, что получаемая при последнем делении единица также должна быть отмечаема стоящей спичкой.
Идеальный разновес
У некоторых читателей, вероятно, возник уже вопрос: почему для выполнения описанных раньше опытов мы пользуемся именно двоичной системой? Ведь всякое число можно изобразить в любой системе, между прочим, и в десятичной. Чем же объясняется предпочтение двоичной?
Объясняется оно тем, что в этой системе, кроме нуля, употребляется всего одна цифра – единица, а следовательно, число составляется из различных степеней 2, взятых только по одному разу. Если бы в фокусе с конвертами мы распределили деньги, например, по 5-ричной системе, то могли бы составить, не вскрывая конвертов, любую сумму лишь в том случае, когда каждый пакет повторяется у нас не менее 4 раз (в 5-ричной системе, кроме нуля, употребляются ведь 4 цифры).
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга написана известным популяризатором и педагогом и содержит парадоксы, головоломки, задачи, опыты, замысловатые вопросы и рассказы из области физики. Книга по характеру изложения и по объему знаний, предполагаемых у читателя, рассчитана на учащихся средней школы и на лиц, занимающихся самообразованием в таком же объеме.
В книгу Якова Перельмана «Головоломки и развлечения» вошли занимательные задачи, опыты, рассказы и игры, помогающие проверить свои знания по математике и физике. Здесь встретятся задачи о часах, числовые головоломки, развлечения со спичками и магические квадраты, сумма чисел сторон которых удивляла астрологов и алхимиков древности и обладала, по их мнению, волшебными свойствами. Для среднего школьного возраста.
Настоящая книга, написанная выдающимся популяризатором науки Я.И.Перельманом, знакомит читателя с отдельными вопросами астрономии, с ее замечательными научными достижениями, рассказывает в увлекательной форме о важнейших явлениях звездного неба. Автор показывает многие кажущиеся привычными и обыденными явления с совершенно новой и неожиданной стороны и раскрывает их действительный смысл.Задачи книги – развернуть перед читателем широкую картину мирового пространства и происходящих в нем удивительных явлений и возбудить интерес к одной из самых увлекательных наук – к науке о звездном небе.Для всех, кто интересуется астрономией, в том числе учителей, лекторов, руководителей кружков, любознательных школьников.
«Головоломки. Задачи. Фокусы. Развлечения» — увлекательная книга, полная волшебства.Автор книги, известный популяризатор науки Яков Исидорович Перельман, поможет читателям разглядеть неожиданные стороны как будто знакомых предметов, откроет секрет феноменальной памяти, научит интересным фокусам, предложит много занимательных игр и развлечений.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.